小波包特征熵-神经网络在轴承故障诊断中的应用
DOI:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:

河北省教育厅产业化项目(CY0403)


Application of neural network based on wavelet packet-characteristic entropy in rolling bearing fault diagnosis
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    提出了一种基于小波包特征熵-神经网络的轴承故障诊断新方法。首先对采集到的轴承的振动信号进行三层小波包分解,提取小波包特征熵,然后构造信号的小波包特征向量,并以此向量作为故障样本对三层BP神经网络进行训练,实现智能化故障诊断。仿真结果表明该方法有效可行。

    Abstract:

    A new fault diagnosis method of vibrating of hearings was proposed on the basis of neural network based on wavelet packet-characteristic entropy(WP-CE).Firstly,three layers wavelet packet decomposition of the acquired vibrating signals of hearings was performed and the wavelet packet-characteristic entropy was extracted;then the eigenvector of wavelet packet of the vibrating signals was constructed,the three layers BP neural network were trained to implement the intelligent fault diagnosis by taking this eigenvector as fault sample.The simulation result from the proposed method is effective and feasible.

    参考文献
    相似文献
    引证文献
引用本文

王利英.小波包特征熵-神经网络在轴承故障诊断中的应用[J].河北工程大学自然版,2008,25(1):49-53

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2007-11-20
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2015-01-12
  • 出版日期:
文章二维码