基于RS-SVM的建筑施工项目安全预警模型
DOI:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:


Safety early-warning model of construction project based on rough set and support vector machine
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对目前建筑施工项目安全风险管理的现状,应用粗集理论对建筑施工项目的安全因素进行预处理,将处理后的信息结构作为支持向量机的输入数据进行训练和预测,构建建筑施工项目安全风险预警模型,并在小样本条件下,与BP神经网络进行对比分析。结果表明,RS-SVM预测模型的最小均方根误差为0.011 5,BP神经网络的均方根误差为0.070 7,RS-SVM预警模型的预测精度、泛化能力明显优越于BP神经网络学习方法。

    Abstract:

    Aimed at the uncertainty of safety risk prediction in construction project currently, Rough set was used to pretreat the safety factors of construction project, and then the pretreatment results were put、the information structure of support by cetor macher(SVM)to traing and prediction. So the construction project safety risk early- warning model was estaldished, and the validity of the orithm was proved by empirical analysis. The MSE of SVM is 0. 011 5,by the BP neural network is 0. 070 7. Fxperimental re- sups revealed that the model of rough set一support vector machine(R.S一SVNI) can realize to delete the superfluous inputting information, to reduce the complexity and improve the interfere resistance. In small sample conditions, the early一warning model of RS- SVM is greatly superior to BP neural network in pre- diction precision and generalization ability.

    参考文献
    相似文献
    引证文献
引用本文

李万庆,安娟.基于RS-SVM的建筑施工项目安全预警模型[J].河北工程大学自然版,2010,27(4):30-35

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2010-09-08
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2015-01-12
  • 出版日期:
文章二维码