基于BP神经网络的供应链风险预警研究
DOI:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:


Research on risk forewarning of the supply chain based on BP neural network
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    通过对供应链风险影响因素的分析建立了供应链风险预警指标体系,利用BP神经网络的自学习特性,反复修正模型的权值,不断减小系统误差,使系统的误差达到该模型要求的精度;然后根据网络输出结果,对网络各层的连接权值进行分析,对比连接权值的大小,找出产生供应链风险的关键风险因素。以河北省28条供应链为例,运用其中25组样本数据对该风险预警系统进行训练,另外3组数据进行测试,结果表明本模型对供应链风险预测的精度达到90%以上,通过网络权值分析可以找到更加切合实际的关键风险因素。

    Abstract:

    The supply chain risk forewarning index system was established by analyzing the influencing factors of supply chain risk,and the error of the system was decreased to the required accuracy by correcting the weights of model with BP neural network self-learning repeatedly.According to the output of the model,the key risk factors which produced supply chain risk could be found out by contrasting the weight of each layer.28 typical supply chains in Hebei Province were taken as example,25 of which were used to train the risk early-warning system,and the others to test.The result shows that the supply chain risk forewarning index system can achieve 90% above of prediction accuracy and find more practical key risk factors through the network weights analysis.

    参考文献
    相似文献
    引证文献
引用本文

李继勇,赵德彪,张静.基于BP神经网络的供应链风险预警研究[J].河北工程大学自然版,2011,28(3):83-87

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2011-03-27
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2015-01-12
  • 出版日期:
文章二维码