基于人工神经网络的液压振动系统研究
DOI:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:


Study on hydraulic vibration system based on artificial neural network
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    以两自由度液压激振压路机的液压振动系统为研究对象,采用立体正交试验选取试验因素,在每个试验因素中选择3个水平子集合,获得训练神经网络的样本。通过人工神经网络理论建立数学模型,借助Mtalab仿真计算出试验因素水平子集合最优组合参数。研究结果表明:通过建立人工神经网络数学模型,得出立体正交表的最优组合仿真目标值为0.552 3,系统刚度为3.3 N/mm,与试验目标值的相对误差为10.46%,满足工程要求。

    Abstract:

    The hydraulic vibration system of two freedom hydraulic vibration roller was the research object in this paper. Three horizontal subsets were selected in every experimental factor which was ob- tained from the three一dimensional orthogonal experiment to obtain the samples of the training neural network. The mathematic model was built by artificial neural network theory and the optimum tom- bined parameters of horizontal subsets were established by means of Mtalab simulation. The results show that target value of the optimum combined is 0. 552 3 and the stiffness of the system is 3. 3 N/ mm through the artificial neural network mathematics model. This meets the project requirement be- cause of the relative error of 10.46% between experimental results and experimental target value.

    参考文献
    相似文献
    引证文献
引用本文

郭志刚,李文选,冯继刚.基于人工神经网络的液压振动系统研究[J].河北工程大学自然版,2012,29(2):78-80

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2011-11-05
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2015-01-12
  • 出版日期:
文章二维码