基于GA-LSSVR算法的回采工作面瓦斯涌出量预测
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:

国家自然科学基金项目(61240050);河北省科技计划项目(13455406D)


Prediction of gas emission quantity of the working face based on genetic algorithm-least squares support vector regression
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对回采工作面瓦斯涌出量问题的小样本、非线性、影响因素关系复杂等特点,采用遗传-最小二乘支持向量回归算法对瓦斯涌出量进行预测,利用定量方法进行分析,避免了定性分析的局限性,有效提高了预测的精度。该模型首先利用遗传算法对最小二乘支持向量回归机中的参数进行训练和优化,然后运用遗传-最小二乘支持向量回归模型对测试样本进行了回采工作面瓦斯涌出量测试。测试结果表明:与支持向量回归机以及最小二乘支持向量回归机的预测值相比,遗传-最小二乘支持向量回归的回采工作面瓦斯涌出量预测可靠性和精确性更高。

    Abstract:

    The problem of the gas emission of the working face was characterized by small samples,nonlinear,and it was affected by complex factors. Using the genetic-least squares support vector regression algorithm to predict the gas emission could avoid the qualitative analysis limitations and effectively improve the accuracy of the forecast,because it was a quantitative method for analysis. First,the model used the genetic algorithms to train and optimize the least squares support vector regression parameters,and then used the genetic-least squares support vector regression model to predict the amount of gas emission of test samples. The test results show that: the genetic algorithm-least squares support vector regression model has a higher reliability and accuracy,compared to the predicted values of the support vector regression and the least squares support vector regression.

    参考文献
    相似文献
    引证文献
引用本文

曹庆奎,商娜欣.基于GA-LSSVR算法的回采工作面瓦斯涌出量预测[J].河北工程大学自然版,2014,31(3):90-94

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2014-03-13
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2015-01-12
  • 出版日期:
文章二维码