Abstract:Based on the mechanism of PM2.5 concentration change in Beijing in 2015, the generalized additive model (GMA) of PM2.5 and atmospheric pollutants (PM10, SO2,NO2,CO,O3), as well as the meteorological factors (daily mean temperature, wind scale, wind direction) are established to explore the impact of different factors on PM2.5 concentration changes. The results showe that: (1) Beijing PM2.5 concentration has the characteristics of low distribution of summer and autumn, however higher in spring and winter; (2) The PM2.5 concentration in Beijing is linearly positively correlated with PM10, SO2, NO2, CO. The positive correlation is from strong to weak: CO> PM10> SO2> NO2, and the relationship with O3, temperature and wind factor is more complicated. (3) The goodness R2 of the GAM model is 0.725, and the goodness of the linear regression model is 0.519. Compared with the GAM model, the explanatory degree of the PM2.5 concentration increased by 20.6%. The results show that the GAM model is more flexible and reliable than the linear regression model in establishing the complex relationship between PM2.5 concentration and influencing factors.