基于GA-LSSVM深基坑墙体侧斜滚动预测模型研究
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:

中央高校基本科研业务费资助项目(3142016021);2017年安全生产重特大事故防治关键技术科技项目(zhishu-0014-2017AQ)


The rolling prediction model research of deep foundation pit wall skew based on GA-LSSVM
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对基坑墙体侧斜数据的小样本和非线性特征,提出一种基于GA-LSSVM模型的基坑墙体侧斜的时间序列滚动预测方法。采用三次样条插值法对基坑墙体侧斜的时间序列进行预处理,运用遗传算法(GA)对最小二乘支持向量机(LSSVM)进行参数寻优,寻找最优参数模型,建立GA-LSSVM时间序列滚动预测模型,预测结果采用相关系数R和均方误差(Mean Squared Error,MSE)进行评价。该方法用于广州某地铁车站基坑墙体侧斜的预测分析,并和未经参数优化的最小二乘支持向量机预测模型进行对比分析,结果表明该预测模型的相关系数高,均方误差小,预测结果较为精准。

    Abstract:

    According to the small sample and nonlinear characteristics of the slope measurement data of foundation pit, a rolling prediction method of time series based on GA-LSSVM model for foundation pit wall measurement was presented.The cubic spline interpolation method was used to pretreat the time series of the foundation pit.Genetic algorithm (GA) was used to optimize the parameters in least squares support vector machine (LSSVM).The optimal parameter model was found out, and the GA-LSSVM time series rolling prediction model was established.The prediction results were evaluated by correlation coefficient R and the mean square error (Mean Squared Error, MSE).The method was applied to the prediction and analysis of the pit excavation of a subway station in Guangzhou, and it was compared with the least squares support vector machine (LSSVM) model without parameter optimization.The results showed that the correlation coefficient of the prediction model was high, the mean square error was small, the prediction result was more accurate.It is of great significance to improve the safety of the construction of the foundation pit and similar projects.

    参考文献
    相似文献
    引证文献
引用本文

赵建钗,刘俊娥,石祥锋.基于GA-LSSVM深基坑墙体侧斜滚动预测模型研究[J].河北工程大学自然版,2018,35(2):49-52,57

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2018-01-14
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2018-06-26
  • 出版日期:
文章二维码