基于GA的负相关剪切集成不平衡行为分类研究
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:

河北省自然科学基金资助项目(E2017402115)河北省自然科学基金资助项目(E2015402077);河北省教育厅高校科学技术研究青年基金资助项目(QN2018073)


Research on Negative Correlation Pruning Ensemble Imbalance Behavior Classification Based on Genetic Algorithm
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    基于传感器的人类活动识别(HAR)在健康医疗领域具有重要的研究价值及研究意义。以往的关于传感器人类活动分类识别算法的研究,并没有考虑不同类别行为数据间的不平衡性。为了解决不同行为类别数据间的不平衡性影响算法精确度的问题,此算法采用下采样方法从大类和小类数据集中随机抽取选出若干组数量上相等的两种数据的集合,将多个不平衡数据变成平衡数据。其次,多个平衡数据集上训练多个弱分类器。然后,此算法以弱分类器的负相关和预测精度为代价函数,使用遗传算法挑选出能够使代价函数值最高的弱分类器来构成集成分类器。使集成算法内的弱学习器具有较高预测精度和多样性。最后,此算法使用挑选出的弱学习器构成集成学习器对人的行为进行集成分类。此算法在已有的行为数据集上进行了仿真实验研究,实验结果证明本文提出的基于遗传的负相关剪切集成不平衡行为识别算法相对于传统算法能够有效提高不平衡行为识别的正确率。

    Abstract:

    Sensor-based human activity recognition (HAR) has important research value and significance in the field of health care. Previous researches on classification and recognition of sensor human activities have not considered the imbalance between different categories of behavior data. In order to solve the problem that the imbalance between data of different behavioral categories affects the accuracy of the algorithm, our algorithm uses the downsampling method to randomly extract two sets of data from large and small data sets, which are equal in number, and transform multiple imbalanced data into balanced data. Secondly, multiple weak classifiers are trained on multiple balanced datasets. Then, the algorithm takes the negative correlation and prediction accuracy of the weak classifier as the cost function and uses genetic algorithm to select the weak classifier which can make the highest value of the cost function to form the integrated classifier. The weak learner in the ensemble algorithm has high prediction accuracy and diversity. Finally, the algorithm uses the selected weak learners to construct an ensemble learner to classify human behavior. The experimental results show that the proposed algorithm can effectively improve the accuracy of unbalanced behavior recognition compared with the traditional algorithms.

    参考文献
    相似文献
    引证文献
引用本文

白梅娟,肖书忠,艾成伟,赵超,黄远,侯帅,黄伟建.基于GA的负相关剪切集成不平衡行为分类研究[J].河北工程大学自然版,2019,36(1):103-107

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2018-12-02
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2019-04-24
  • 出版日期:
文章二维码