摘要:为准确预测多影响因素下碳纤维增强复合材料(CFRP)约束型钢混凝土柱(SRCC)的轴压承载力,提出了一种基于随机森林(RF)、分类提升(Catboost)、极端梯度提升(XGBoost)、梯度提升回归树(GBRT)的多元算法融合预测模型。首先采用合成少数类过采样技术(SMOTE)算法对原始数据集进行扩充,开展了10种传统机器学习和集成学习模型试验,筛选出决定系数R2均大于0.92的RF、Catboost、XGBoost、GBRT的4种集成学习模型,用随机搜索优化其超参数,然后融合形成了RF-Catboost-XGBoost-GBRT预测模型,对CFRP约束SRCC的承载力进行预测。结果表明,两种数据集下RF-Catboost-XGBoost-GBRT模型的预测性能最好,原始数据集经SMOTE算法处理后,5种预测模型R2平均提高20.43%,其中RF-Catboost-XGBoost-GBRT模型的R2达到了0.942,预测值误差均在±10%以内。