相变能+热泵供暖系统实验研究
CSTR:
作者:
中图分类号:

TU831.6

基金项目:

中央引导地方科技发展资金资助项目(236Z4310G);河北省重大科技成果转化项目(21284102Z);河北省创新能力提升计划项目 (202250702010094)


Experimental Study of Phase Change Energy Plus Heat Pump Heating System
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [10]
  • |
  • 相似文献 [8]
  • |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    针对我国北方山区冬季没有合适热源供暖的问题,基于水-冰相变凝固换热原理,利用水相变的凝固潜热作为热泵机组的低温热源,设计研发了相变能+热泵供暖系统并进行实验研究。研究表明:系统在凝固换热阶段,结冰厚度达到30 mm时,综合传热系数为151 W/(m2·K),系统有效能效比为3.52;本次设计循环周期为4 h,传热系数取150 W/(m2·K),确定U型蓄冰槽的储能量与换热量;融冰能耗占比为5.6%,融冰时间为26 min;实验系统可满足300 m2房屋的供暖需求。

    Abstract:

    In view of the problem that there is no suitable heat source for heating in winter in the mountainous areas of northern China, in this paper, based on the principle of solidification and heat exchange of water-ice phase change, the latent heat of solidification of water phase change is used as the low-temperature heat source of heat pump unit, and the phase change energy plus heat pump heating system is designed and developed and experimentally studied. The results show that when the icing thickness reaches 30 mm in the solidification and heat exchange stage of the system, the comprehensive heat transfer coefficient is 151 W/(m2· K), and the Coefficient of Performance (COP) is 3.52. The design cycle is 4 h and the heat transfer coefficient is 150 W/(m2· K), in order to determine the energy storage capacity and heat transfer of the U-shaped ice storage tank. The energy consumption of ice melting accounts for 5.6%, and the ice melting time is 26 min. The experimental system can meet the heating needs of a house of 210 m2.

    参考文献
    [1] MOHAMMAD M H, SEPEHR M, MAJID S.Battery thermal management with thermal energy storage composites of PCM,metal foam,fin and nanoparticle[J]. Journal of Energy Storage, 2020, 28(4): 1-14.
    [2] PETER W E, MICHAEL K.From physical properties of ice slurries to industrial ice slurry applications[J]. International Journal of Refrigeration, 2005, 28(7): 4-12.
    [3] 孙德兴, 张承虎, 吴荣华, 等. 利用冷水凝固热的热泵系统与装置[J]. 暖通空调, 2006(7): 41-44.
    [4] 张承虎. 提取冷水凝固潜热的换热理论与装置[D].哈尔滨: 哈尔滨工业大学, 2008.
    [5] 刘志斌, 岳远博, 吴荣华. 冷水相变能热泵系统及其传热性能[J]. 暖通空调, 2020, 50(10): 94-98.
    [6] 杨玉娟,吴荣华,岳远博. 冷水相变能热泵系统的性能系数与经济性分析[J]. 热能动力工程, 2023, 38(3): 150-157.
    [7] 许 超, 张昌建, 罗景辉, 等. 面向煤矿的套管式相变凝固换热装置与热泵供暖系统实验研究[J]. 煤炭工程, 2022, 54(12): 152-156.
    [8] 张承虎, 孙德兴. 两侧对流条件下平面冻结凝固相变换热分析[J]. 太阳能学报, 2009, 30(1): 75-80.
    [9] 程艳芳, 吴荣华, 于 灏, 等. 冷水相变机与空气源热泵耦合系统最佳工况点及能耗分析[J]. 热能动力工程, 2022, 37(3): 168-175.
    [10] 刘小溪, 张昌建, 胡文全, 等.太阳能/直蒸式水源热泵耦合供暖系统的应用研究[J].太阳能, 2022 (8): 64-69.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

姜钊乐,张昌建,罗景辉,杨国栋,彭磊.相变能+热泵供暖系统实验研究[J].河北工程大学自然版,2024,41(5):64-70

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2023-09-19
  • 在线发布日期: 2024-11-02
  • 出版日期: 2024-10-25
文章二维码