压裂路径对水力压裂裂纹扩展影响试验研究
作者:
中图分类号:

P642

基金项目:

河北省自然科学基金资助项目(E2019402361,E2020402075);河北省重点研发计划项目(21374104D);河北省高等学校科学技术研究项目(ZD2021309)


Experimental Study on the Influence of Hydraulic Fracturing Path on Crack Propagation of Hydraulic Fracturing
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [20]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    为深入探究煤岩体弹塑性对结构弱面的影响效果,按照起裂位置、压裂方向与层理方向的组合关系开展了压裂试验,利用非金属超声探测仪和声发射对压裂过程进行监测,从裂纹扩展形态、缝宽、渗透流量等方面对压裂效果进行综合评价,并从能量角度进行了相应解释。试验结果显示,顶板覆岩起裂优于本煤层起裂,垂直层理压裂优于平行层理压裂。垂直层理方向的压裂效果最好,裂纹扩展形态更为复杂,呈"O"字形,其渗透系数均值为6.6 mm/s,是平行层理的1.10倍。裂纹由顶板覆岩起裂越界传递至煤块,相同起裂能量情况下可在煤块中形成3.08~3.38倍的当量长度裂纹。

    Abstract:

    In order to deeply explore the effect of coal rock mass elastic-plastic deformation on structu-ral weak planes, fracturing experiments were conducted according to the combination relationship of crack initiation position, fracturing direction, and bedding direction. Non-metallic ultrasonic detectors and acoustic emission were used to monitor the fracturing process, and the fracturing effect was comprehensively evaluated from the aspects of crack propagation morphology, crack width, and permeability flow rate. Corresponding explanations were given from the perspective of energy. The experimental results show that the fracturing of the overlying strata is better than that of the coal seam, and vertical bed-ding fracturing is better than parallel bedding fracturing. The fracturing effect is best in the vertical bedding direction, and the crack propagation morphology is more complex, forming an "O" shape. Its ave-rage permeability coefficient is 6.6 mm/s, which is 1.10 times that of parallel bedding. The cracks propagate from the overlying rock of the roof to the coal block, and under the same initiation energy, 3.08 to 338 times equivalent length cracks can be formed in the coal block.

    参考文献
    [1] 陈 天, 易远元, 李甜甜, 等. 中国煤层气勘探开发现状及关键技术展望[J]. 现代化工, 2023, 43(9): 6-10.
    [2] HUANG B X, LIU C Y, FU J H, et al. Hydraulic fracturing after pressure control blasting for increased fracturing [J]. International Journal of Rock Mechanics and Mining Sciences, 2011, 48(6): 976-983.
    [3] 王 浩. 分支钻孔分段水力压裂技术研究及应用[J]. 煤炭技术, 2020, 39(1): 138-140.
    [4] 赵阳升, 杨 栋, 胡耀青, 等. 低渗透煤储层煤层气开有效技术途径的研究[J]. 煤炭学报, 2001, 26(5): 455-458.
    [5] 高鑫浩, 王明玉. 水力压裂-深孔预裂爆破复合增透技术研究[J]. 煤炭科学技术, 2020, 48(7): 318-324.
    [6] ZENG X G, WEI Y J. Crack deflection in brittle media with heterogeneous interfaces and its application in shale fracking[J]. Journal of the Mechanics and Physics of Solids, 2017, 101: 235-249.
    [7] 侯 冰, 张其星, 陈 勉. 页岩储层压裂物理模拟技术进展及发展趋势[J]. 石油钻探技术, 2023, 51(5): 66-77.
    [8] 李云鹏, 张宏伟, 苏怀瑞, 等. 复杂坚硬岩层井上下联合水力压裂控制技术研究[J]. 采矿与安全工程学报, 2023, 40(4): 704-713.
    [9] 王礼恒, 董艳辉, 杨 春, 等. 页岩气水力压裂开发的环境效应研究进展[J]. 工程地质学报, 2024, 32(4): 1447-1458.
    [10] 张同景, 郑永香, 郑超越, 等. 注液速率对页岩水力压裂起裂的影响规律研究[J]. 河北工程大学学报(自然科学版), 2022, 39(4): 100-105.
    [11] 侯 冰, 程 万, 陈 勉, 等. 裂缝性页岩储层水力裂缝非平面扩展实验[J]. 天然气工业, 2014, 34(12): 81-86.
    [12] DANESHY A A. Hydraulic fracture propagation in layered formations[J]. Society of Petroleum Engineers Journal, 1978, 18(1): 33-41.
    [13] WU X, XI C F, WANG G Q. The mathematic model research of complicated fractures system in coalbed methane wells[J]. Natural Gas Industry B, 2006, 26(12): 124-126.
    [14] ZOU Y S, ZHANG S C, MA X F, et al. Numerical investigation of hydraulic fracture network propagation in naturally fractured shale formations[J]. Journal of Structural Geology, 2016, 84: 1-13.
    [15] ZOU Y S, ZHANG S C, ZHOU T, et al. Experimental investigation into hydraulic fracture network propagation in gas shales using CT scanning technology[J]. Rock Mechanics and Rock Engineering, 2016, 49: 33-45.
    [16] WANG T, HU W R, DEREK, et al. The effect of natural fractures on hydraulic fracturing propagation in coal seams[J]. Journal of Petroleum Science and Enginee-ring, 2017, 150: 180-190.
    [17] WAN C, YAN J, MIAN C. Experimental study of step-displacement hydraulic fracturing on naturally fractured shale outcrops[J]. Journal of Geophysics and Enginee-ring, 2015, 12(4): 714-723.
    [18] 战新宇, 高 林, 赵芳昊, 等. 大相似比模型试验用超高强相似材料配比试验研究[J]. 煤田地质与勘探, 2023, 51(11): 109-118.
    [19] 李 明, 缪海宾, 马明康, 等. 基于达西定律的渗流边坡稳定性分析[J]. 煤矿安全, 2021, 52(5): 238-241+249.
    [20] GRIFFITH A A. The phenomena of rupture and flow in solids[J]. Philosophical Transactions of the Royal Society of London. Series A, 1921, 221: 163-198.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

刘剑,邵振宝,付京斌,吴珍锁,王耀宗,王会昊.压裂路径对水力压裂裂纹扩展影响试验研究[J].河北工程大学自然版,2024,41(6):8-17

复制
分享
文章指标
  • 点击次数:25
  • 下载次数: 64
  • HTML阅读次数: 0
  • 引用次数: 0
历史
  • 收稿日期:2023-11-18
  • 在线发布日期: 2025-01-14
  • 出版日期: 2024-12-25
文章二维码