Vol. 30 No. 2 Jun. 2013

**文章编号:**1673-9469(2013)02-0004-05 doi:10.3969/j.issn.

doi : 10. 3969/j. issn. 1673 - 9469. 2013. 02. 002

# 边界不同恒温时功能梯度板平面稳态温度场

许杨健1,王飞1,杜海洋1,2,任鹏飞1

(1. 河北工程大学 土木工程学院,河北 邯郸 056038;2. 哈尔滨工业大学 航天学院,黑龙江 哈尔滨 150001)

**摘要:**假设热导率沿功能梯度板高呈指数函数形式分布,基于该板的平面稳态热传导基本方程, 用分离变量法,导出边界不同恒温时该板的平面稳态温度场的级数解析解,与有限元解对比,两 种方法的最大节点温度误差0.86%。通过数值计算,获得了该板的平面稳态温度场分布,研究 了板的梯度参数和几何组成对温度场的影响。主要结果表明:板内的温度场分布对称于过形心 的 y 轴;随着梯度参数值的增加,板内的高温区向左右两边界和下边界逐步扩展;随着板高的递 减,板内中下部的温度分布趋于平缓。因此,可选择适合的梯度参数和几何组成来满足设计、应 用和热应力分析的需要,所获得的解析解可作为检验其他近似方法的参考标准。 关键词:功能梯度板;平面稳态温度场;分离变量法;边界恒温;梯度参数;几何组成 中图分类号:TB330.1; TK124

# Plane steady temperature fields in a FGM plate subjected to boundary different constant temperatures

XU Yang – jian<sup>1</sup>, WANG Fei<sup>1</sup>, DU Hai – yang<sup>1,2</sup>, REN Peng – fei<sup>1</sup>

(1. College of Civil Engineering, Hebei University of Engineering, Hebei Handan 056038, China;

2. School of Austronautics, Harbin Institute of Technology, Heilongjiang Harbin 150001, China)

Abstract: The heat conductivity in the FGM plate was expressed by exponential function along the height direction of the plate, based on the plane steady heat conduction basic equation of the plate, the series analytical solution of the plane steady temperature fields of in the plate subjected to the different constant temperature of boundary was derived by variable separation method. Compared with FEM, the maximum node temperature error of two methods was 0.86%. Through the numerical calculations, the plane steady temperature field distributions in the plate were obtained, and the effects of material gradient parameters and the geometric composition of the plate on the temperature fields were studied. The main results show as follows: (1) The temperature field distribution in the plate is symmetrical to the axis y through the centroid. (2) With the increase of gradient parameter value, the high temperature zone in the plate is extended to the two sides and lower side of plate. (3) With the decreasing of the plate height, central lower temperature distribution in the plate tends gently. Thus, the suitable selection of gradient parameter and geometric composition can meet the need of the design, application and analysis of the thermal stress, and the analytical solution obtained can be used as a reference standard for other approximate methods.

Key words: FGM plate; 2D steady temperature fields; variable separation method; boundary different constant temperature; gradient parameters; geometric composition

由于功能梯度材料(简称 FGM)在航空、航天 以及核反应堆等超高温工作环境中的应用日益广 泛<sup>[1-2]</sup>,分析该材料组成物体的热传导问题十分 重要。赵军等<sup>[3]</sup>用分离变量法推导了 FGM 无限

大平板、圆筒和圆球的一维瞬态热传导解析解:陈 建桥等<sup>[4]</sup> 用无网格局部彼得罗夫 - 伽辽金 (MLPG)方法研究了变物性 FGM 的三维瞬态热传 导问题;张雁等<sup>[5]</sup>用有限差分法研究了 C/C/ Al<sub>2</sub>O<sub>3</sub> FGM 板在第二类热边界作用下的瞬态温度 场分布。许杨健等<sup>[6-7]</sup>用有限元法和有限差分法 研究了 FGM 板在第一类和第三类热边界作用下 的常物性和变物性瞬态热传导问题。刘五祥等<sup>[8]</sup> 用分离变量法结合贝塞尔函数特性,推导了轴对 称 FGM 圆板二维稳态热传导问题的精确解。蓝 林华<sup>[9]</sup>等人用分层精细指数法研究了常物性 FGM 结构的二维稳态热传导问题,该方法通过空间坐标 的离散,将二维热传导偏微分方程降解为一系列一 维常微分方程的求解问题。Jin Zhihe<sup>[10]</sup>等研究了 有限冷却/加热率下 FGM 板热传导问题的渐近解。 Babaei M H 等<sup>[11]</sup>研究了 FGM 圆筒的双曲型热传导 问题。Golbahar Haghighi M R 等<sup>[12]</sup> 研究了多层 FGM 圆筒的瞬态热传导逆问题。Malekzadeh P 等[13]用有限元和微分求积法研究了内表面上承受 边界移动分布热流的 FGM 圆筒的瞬态传热问题。 本文采用分离变量法推导 FGM 板的平面稳态热传 导的级数解析解,并研究梯度参数和几何组成对温 度场的影响,以期可通过选择适合的梯度参数来满 足设计、应用和热应力分析的需要。

## 1 研究模型与描述

拟推导图 1 所示 FGM 板在边界不同恒温时 的平面稳态温度场的解析解。

假设:(1)沿板高的材料性质连续分布;(2) 板的上边界为恒温 UK,其余边界均为恒温 u<sub>a</sub>K; (3)板内无热源,板的几何尺寸与坐标选择见图 1。a,b分别为板的宽和高。



# 图1 边界不同恒温时的功能梯度板

Fig. 1 FGM plate of boundary with different constant temperatures

该板的二维稳态平面热传导微分方程为  

$$\frac{\partial}{\partial x} \left( k(y) \frac{\partial T}{\partial x} \right) + \frac{\partial}{\partial y} \left( k(y) \frac{\partial T}{\partial y} \right) = 0$$
 (1)

式中:k(y) – 材料的热导率;T(x,y) – FGM 板的 温度。

假设材料的热导率沿板高呈指数函数形式分 布,即<sup>[14-15]</sup>

$$k(y) = De^{dy} \tag{2}$$

式中:D为y=0处的热导率;d为y方向的梯度参数。为使边界条件齐次化,令

$$T(x,y) = u_0 + W(x,y) \tag{3}$$

则 
$$W(0,y) = 0, W(a,y) = 0$$
 (4)

$$W(x,0) = 0, W(x,b) = U - u_0$$
(5)

式中:W(x,y)-满足热传导方程的函数。

## 2 解析法求解温度场

# 2.1 分离函数

将式(2)和(3)代人式(1),FGM 板的热传导 微分方程可变化为

$$d\frac{\partial W(x,y)}{\partial y} + \frac{\partial^2 W(x,y)}{\partial x^2} + \frac{\partial^2 W(x,y)}{\partial y^2} = 0 \quad (6)$$

采用分离变量法,将函数 ₩(x,y)分离为 x,y 方向函数乘积形式,即

$$W(x,y) = X(x) \times Y(y)$$
 (7)  
将式(7)代人式(6),可得

$$(dY' + Y'')/Y = -X''/X = \lambda$$
(8)

式中: $X', Y' - 相应函数的一阶导数; X'', Y'' - 相应函数的二阶导数, <math>\lambda$  为分离常数。式(8) 左边 为 y 的函数, 右边为 x 的函数, 如果两边相等, 则应 等于  $\lambda$ 。

将式(8)分离成两项函数,并给出相应边界条 件,得

| $X^{\prime\prime} + \lambda X = 0 \tag{9a}$ | a | ) |
|---------------------------------------------|---|---|
|---------------------------------------------|---|---|

$$X(0) = 0, X(a) = 0$$
 (9b)

$$Y^{\prime\prime} + dY^{\prime} - \lambda Y = 0 \tag{10a}$$

$$Y(0) = 0, Y(b) = U - u_0$$
 (10b)

### 2.2 函数 X(x) 的求解

当λ>0时,式(9a)的解为

$$X(x) = C_1 \cos \sqrt{\lambda x} + C_2 \sin \sqrt{\lambda x}$$
(12)

式中:*C*<sub>1</sub>,*C*<sub>2</sub> - 两个任意参数,把式(9 b)代人式 (12),若式(12)有解,得

$$C_1 = 0$$
 (13)

$$\lambda = n^2 \pi^2 / a^2, (n = 1, 2, 3, \cdots)$$
 (14)

| X(x)的解为                          |      |
|----------------------------------|------|
| $X_n(x) = C_{2n} \sin(n\pi/a) x$ | (15) |

#### 2.3 函数 Y(x) 的求解

将式(14)代入式(10a),得

$$Y'' + dY' - (n^2 \pi^2 / a^2) Y = 0$$
 (16)  
其特征方程为

$$r^{2} + dr - n^{2} \pi^{2} / a^{2} = 0$$
 (17)

$$\diamondsuit \delta_n = \sqrt{d^2 + 4n^2 \pi^2 / a^2}$$
 (18)

$$Y_n(y) = D_n e^{\frac{-y \cdot v_n}{2}} + E_n e^{\frac{-y \cdot v_n}{2}}$$
(19)  
$$\exists \mathbf{h} : D_n, E_n - \mathbf{\hat{h}} \Xi \mathbf{\hat{h}} \mathbf{\hat{h}}_0.$$

#### 2.4 温度场的解析解

将式(15)、式(19)代入式(7)后叠加得

$$W(x,y) = \sum_{n=1}^{\infty} \left[ \left( A_n e^{\frac{-d+\delta_n}{2}y} + B_n e^{\frac{-d+\delta_n}{2}y} \right) \cdot \sin \frac{n\pi}{a} x \right] \quad (20)$$

把式(5)代人式(20)中,利用三角函数的正 交性,得

$$A_n = -B_n = 0, n = 2l$$
 (21)

$$A_{n} = -B_{n} = \left(\frac{4(U-u_{0})}{n\pi}e^{\frac{d}{2}b}\right) / \left(e^{\frac{-\delta_{n}}{2}b} - e^{\frac{\delta_{n}}{2}b}\right), n = 2l - 1$$
(22)

式中:1=1,2,3,…。

将式(22)代人式(20)后,再将得到的 W(x, y)代人式(3),则边界不同恒温时 FCM 板的平面 稳态温度场的解析解为

$$T(x,y) = u_0 + 4 \frac{U - u_0}{\pi} e^{d(\frac{b - y}{2})} \cdot \sum_{l=1}^{\infty} \left[ \frac{1}{2l - 1} \cdot \operatorname{sh} \frac{\delta_l}{2} y \cdot \sin \frac{(2l - 1)\pi}{a} x / \operatorname{sh} \frac{\delta_l}{2} b \right] \quad (23)$$

## 3 算例与分析

#### 3.1 正确性检验

分别应用式(23)、式(24)进行计算,然后对 比结果。板的几何尺寸 a = b = 10 mm,上边界恒 温 U = 100 K,其余三边界恒温  $u_0 = 0$  K,梯度参数 d = 0.1/mm,板的下边界处的热导率 D = 1W/(m ·K)。在进行有限元计算时,将 FGM 板离散为 800 个单元和 441 个节点,单元边长 0.5 mm。部 分计算结果见表 1。

由表1可知:两种方法的最大节点温度误差

0.86%,因此,两种计算方法正确可靠。

## 表1两种方法计算结果的对比

Tab. 1 Contrast of the calculation results of two methods

| 坐 标/    | FEM 解温度 | 解析解温度  | 误 差   |
|---------|---------|--------|-------|
| (mm,mm) | /K      | /K     | %     |
| (1,0)   | 0.00    | 0.00   | 0.00  |
| (1,1)   | 1.68    | 1.67   | -0.60 |
| (1,2)   | 3.36    | 3.35   | -0.30 |
| (1,3)   | 5.22    | 5.20   | -0.38 |
| (1,4)   | 7.46    | 7.43   | -0.40 |
| (1,5)   | 10.33   | 10.29  | -0.39 |
| (1,6)   | 14.29   | 14.21  | -0.56 |
| (1,7)   | 20.21   | 20.07  | -0.70 |
| (1,8)   | 30.34   | 30.08  | -0.86 |
| (1,9)   | 51.30   | 51.27  | -0.06 |
| (1,10)  | 100.00  | 100.00 | 0.00  |

#### 3.2 结果与讨论

统一热边界条件为:上边界恒温 U = 1 300 K, 其余三边界恒温 u<sub>0</sub> = 300 K。

3.2.1 梯度参数对温度场的影响

设板的几何尺寸 *a* = *b* = 10 mm,梯度参数分 别为 *d* = -0.2/mm,0,0.2/mm,此时稳态温度场 的等温线分布见图 2。

由图2可知:

(1)由于 FGM 板结构在几何形状、热性质以 及外加热载等方面关于板中心线  $\bar{x} = x/a = 0.5$  对称,所以,在不同梯度参数作用下,温度场等温线 分布也关于板中心线  $\bar{x} = 0.5$  对称(图2)。

(2)由于左右两边界的常温作用,对于同一 水平截面,FGM 板内温度在轴 x̄ = 0.5 附近最大。 在左右两边界降至常温 300 K 时,板内的温度梯 度变化由中部向左右两边界递增。

(3)随着梯度参数 d 的增加, FCM 板内的高 温区向左右两边界和下边界逐步扩展。400 K 等 温线的最低点位置:当d = -0.2/mm时,位于 $\bar{y} =$ 0.41 附近,当d = 0/mm时(为均质材料),位于 $\bar{y}$ =0.25 附近,当d = 0.2/mm时,位于 $\bar{y} = 0.18$  附 近。这与 FGM 板的热导率分布有关,当d > 0 时, 热导率自上而下递减,当d < 0 时,热导率自上而 下递增。

(4) 在无量纲坐标(0.5,0.25)处:当 *d* = 0 时 的温度值为 395.57 K,当 *d* = -0.2/mm 时的温度 值 340.93 K 比当 *d* = 0 时低 13.8%,当 *d* = 0.2/ mm 时的温度值 483.46 K 比当 *d* = 0 时高 22.2%。



Fig. 4 Isotherm distributions when a=10mm, b=5mm

综合分析图 2、图 3、图 4 可知,板的几何组成 对温度场的影响如下:

(1)板内稳态温度场的对应等温线的梯度:
与 a = b = 10mm 时比较,在板的两侧,在 a = 5 mm,
b = 10 mm 时明显变小,在 a = 10 mm, b = 5 mm 时

明显变大;在板的中下部,在a = 5 mm, b = 10 mm时明显变大,在a = 10 mm, b = 5 mm时明显变小。 因此,在a = 5 mm, b = 10 mm时的高温区在板的 两侧变化比较缓和,在中部变化较大,在a = 10mm,b = 5 mm时的高温区在板的两侧变化比较剧 烈,在中下部变化比较缓和。

(2) 400 K 等温线最低点位置:在 *a* = 10 mm, *b* = 5 mm 时,当 *d* = -0.2/mm 时位于  $\bar{y} = y/b =$ 0.26附近,当 *d* =0.2/mm 时位于  $\bar{y} = 0.06$  附近;在 *a* = 5 mm,*b* = 10 mm 时,当 *d* = -0.2/mm 时位于  $\bar{y}$ = 0.62 附近,当 *d* = 0.2/mm 位于  $\bar{y} = 0.5$  附近;在 *a* = *b* = 10 mm 时,当 *d* = -0.2/mm 时位于  $\bar{y} = 0.41$ 附近,当 *d* = 0.2/mm 时位于  $\bar{y} = 0.18$  附近。因此, 在 *a* = *b* = 10 mm 时的 400K 等温线最低点位置是 处在 *a* = 10 mm,*b* = 5 mm 和 *a* = 5 mm,*b* = 10 mm 之间。

(3) 板内稳态温度场的对应等温线在 y 方向 的位置: 与 a = b = 10 mm 时比较, 在 a = 5 mm, b = 10 mm 时明显集中到板的中上部, 在 a = 10 mm, b = 5 mm 时明显扩展到板的两侧和下半部。因此, 在 a = 5 mm, b = 10 mm 时的高温区主要集中在板 的中上部, 在 a = 10 mm, b = 5 mm 时的高温区已 扩展到板的两侧和下半部。

(4) 对于同一梯度参数 d,随着 FGM 板高的 递减,板内中下部的温度分布趋于平缓,高温区迅 速扩展到板的下半部和两侧,且板的两侧的温度 梯度较大,将会造成热应力的变化较大。左、右和 下边界的恒温作用造成的降温效果不明显。随着 FGM 板宽的递减,板内的温度分布变化加大,高温 区迅速收缩到板的中上部,左、右和下边界的恒温 作用造成的降温效果明显。

## 4 结论

1)在假设热导率沿功能梯度板高呈指数函数形式分布的基础上,采用分离变量法,推导出边界不同恒温时 FGM 板的平面稳态温度场的级数解析解,通过与有限元解的对比,检验了研究方法及其结果的正确性。

2)当上边界恒为1300 K 与其余三边界恒为 300 K 时,FGM 板的平面稳态等温线分布对称于 过形心的 y 轴。随着梯度参数 d 的增加,FGM 板 内的高温区向左右两边界和下边界逐步扩展。板 内的温度梯度变化由中部向左右两边界递增。

3)随着 FGM 板高的递减,板内中下部的温度 分布趋于平缓,高温区迅速扩展到板的下半部和 两侧,且板的两侧的温度梯度较大;随着 FCM 板 宽的递减,板内的温度分布变化加大,高温区迅速 收缩到板的中上部。

## 参考文献:

- [1] 韩杰才, 徐 丽, 王保林, 等. 梯度功能材料的研究进展 及展望 [J]. 固体火箭技术, 2004, 27(3): 207-215.
- [2] 仲 政, 吴林志, 陈伟球. 功能梯度材料与结构的若干 力学问题研究进展 [J]. 力学进展, 2010, 40(5): 528-541.
- [3] ZHAO J, AI X, LI Y Z. Transient field temperature field in functionally graded materials with different shapes underconvective boundary conditions [J]. Heat Mass Transfer, 2007, 43 (12): 1227 - 1232.
- [4] 陈建桥,丁亮.功能梯度材料瞬态热传导问题的 ML - PG 方法 [J]. 华中科技大学学报,2007,35(4): 119-121.
- [5]张雁,刘霓生,陈林泉,等.第二类边界条件下梯度 功能材料一维温度场的数值模拟[J].固体火箭技 术,2004,27(2):145-148.
- [6] 许杨健,涂代惠.对流换热边界下变物性梯度功能材 料板瞬态温度场有限元分析 [J].复合材料学报, 2003,20(2):94-99.
- [7] 许杨健,赵志岗.梯度功能材料板瞬态温度场有限元分析 [J].功能材料,1999,30(1):103-106.
- [8] 刘五祥. 轴对称功能梯度材料稳态热传导的精确解
   [J]. 同济大学学报, 2010, 38(5): 716-719.
- [9] 蓝林华, 富明慧, 高文乐. 功能梯度材料稳态热传导 方程的分层精细指数法 [J]. 中山大学学报, 2011, 50(4):1-6.
- [10] JIN Z H. Heat conduction in a functionally graded plate subjected to finite cooling/heating rates: an asymptotic solution [J]. Materials, 2011, 4(12): 2108-2118.
- [11] BABAEI M H, CHEN Z T. Transient hyperbolic heat conduction in a functionally graded hollow cylinder
   [J]. Journal of Thermophysics and Heat Transfer, 2010, 24(2): 325 330.
- [12] GOLBAHAR HAGHIGHI M R, MALEKZADEH P, RAHIDEH H, et al. Inverse transient heat conduction problems of a multilayered functionally graded cylinder
  [J]. Numerical Heat Transfer, Part A: Applications: An International Journal of Computation and Methodology, 2012, 61(9): 717-733.
- [13] MALEKZADEH P, GOLBAHAR HAGHIGHI M R, HEY-DARPOU Y. Heat transfer analysis of functionally graded hollow cylinders subjected to an axisymmetric moving boundary heat flux [J]. Numerical Heat Transfer, Part A: Applications: An International Journal of Computation and Methodology, 2012, 61(8): 614-632.
- [14] OHMICHI M, NODA N. Plane thermal stresses in a functionally graded plate subjected to a partial heating [J]. Journal of Thermal Stresses, 2006, 29(12): 614-632.
   (责任编辑 马立)