文章编号:1673-9469(2020)03-0001-08

DOI:10. 3969/j. issn. 1673-9469. 2020. 03. 001

室内二维弥散试验拖尾现象研究

陈 亮^{1,2},张 赏^{1,2},余 旺^{1,2},顾家慧^{1,2}

(1.河海大学 岩土力学与堤坝工程教育部重点试验室,江苏南京 210098;2.河海大学 岩土工程科学研究所,江苏南京 210098)

摘要:针对传统二维弥散试验理论模型解析解不能描述拖尾现象的问题,建立了指数衰减模型 来模拟二维弥散试验中 C-t 曲线浓度下降段并描述拖尾现象,通过室内二维弥散试验来进行验 证,发现模拟效果较好,通过改变水力梯度和浓度来研究指数衰减模型相关参数 α 、 β 的意义及变 化规律,研究结果表明 α 为污染物浓度随时间变化的速率, β 为投源孔初始浓度与测孔峰值浓度 的比值。污染物浓度越大, α 值越小,污染物衰减速度越慢,拖尾时间越长;水力梯度越大, α 值越 大,污染物衰减速度越快,拖尾时间越短,而 β 值与流速无关;距离投源孔越远, α 值越小,污染物 衰减速度越慢,拖尾时间越长,而 β 值越来越大,C-t 曲线浓度峰值越来越小。

关键词:二维弥散;污染物运移;拖尾现象;指数衰减函数 中图分类号:TU441 文献标识码:A

Study on the Trailing Phenomenon of Indoor Two-dimensional Dispersion Test

CHEN Liang^{1,2}, ZHANG Shang^{1,2}, YU Wang^{1,2}, GU Jiahui^{1,2}

Key Laboratory of Geomechanics and Embankment Engineering, Hohai University, Nanjing 210098, China;
 Geotechnical Research Institute, Hohai University, Nanjing 210098, China)

Abstract: The analytical solution of the traditional two-dimensional dispersion test theoretical model cannot describe the tailing phenomenon. Therefore, this paper established an exponential decay model to simulate the *C*-*t* curve concentration drop in the two-dimensional dispersion test and verified it by the indoor two-dimensional dispersion test. It is found that the simulation effect is better. By changing the hydraulic gradient and concentration, the significance and change rules of the relevant parameters α , β of the exponential decay model are studied. The results show that α is the rate of change of pollutant concentration with time, and β is the ratio of the initial concentration of the source hole to the peak concentration of the measured hole. The greater the pollutant concentration, the smaller the α value, the slower the decay rate of pollutants, the longer the tail time; the greater the hydraulic gradient, the larger the α value, the faster the pollutant attenuation rate, and the shorter the tailing time, and the β value is independent of the flow rate; the farther away from the source hole, the smaller the α value, the pollutant attenuation, the slower the speed, the longer the tailing time, while the β value becomes larger and larger, and the peak concentration of the *C*-*t* curve becomes smaller and smaller.

Key words: two-dimensional dispersion; pollutant transport; tailing phenomenon; exponential decay function

随着社会的快速发展,人类的频繁活动,化肥 和农药的大量使用,污水和垃圾的大量排放,尤其 是核能源导致的核废料,不断往地下渗入,严重污染了土壤以及地下水^[14]。在污染物防治的过程

收稿日期:2020-07-03

基金项目:国家自然科学基金资助项目(51778210)

作者简介:陈亮(1976-),男,江苏徐州人,博士,教授,主要从事岩土渗流理论与测试方面的研究。

中,研究溶质运移的规律是其中关键。Fick 基于 弥散试验,将分子扩散定律应用在弥散问题中,但 在实际情况中,溶质在多孔介质中的运移大多数 是非费克的[5-9]。非费克现象主要包括非对称的 拖尾或提前穿透等现象,其中拖尾现象一直是国 内外学者们关注的焦点,即在已经遭受污染物污 染的地区,往往很长一段时间内都会残存污染物, 污染物长时间内无法消散,抑或是消散时间远超 过基于 Fick 定律的理论时间。Neuman S P^[10-11]等 人认为溶质运移的拖尾现象是由土体非均质性导 致的。Langevin C D^[12]等人的试验结果表明,环境 温度的变化和溶质的浓度变化也会导致拖尾分 布,他们认为这些因素的变化会导致地下水密度 的变化从而会对地下水的流速流态产生实质性的 影响。王泽坤[13-14]等人研究发现了土体中含有的 透镜体或者死端孔隙对拖尾现象也存在着不同程 度的影响。徐玉璐^[15]通过室内弥散试验,得到污 染物浓度随时间以及距离变化的穿透曲线,每组 试验中均出现拖尾现象,这种现象随着试样圆曲 率的减小和粒径的增大而更加明显。由于传统对 流-弥散方程描述污染物运移会出现拖尾现象,因 此本文建立了指数衰减函数模型来描述 C-t 曲线 下降段和拖尾现象,并通过室内二维弥散实验结 果来验证模型拟合度,分析了模型各参数的意义, 以及污染物浓度和水力梯度对相关参数的影响。

1 试验原理及计算模型

二维弥散试验的理论模型见式(1),其解析解 式(2)^[16]可用来描述溶质运移过程,溶质运移曲 线应符合正态分布,但实际情况中,由于土体的非 均质性等因素,溶质运移并不符合正态分布,解析 解不能准确描述实验结果,尤其是浓度下降段与 理论值相差比较大,即出现拖尾现象(图1)^[17]。

$$\begin{cases} \frac{\partial C}{\partial t} = D_L \frac{\partial^2 C}{\partial x} + D_T \frac{\partial^2 C}{\partial y} - u \frac{\partial C}{\partial x} \\ C(x, y, 0) = 0 \quad x, y \neq 0 \\ C(\pm \infty, y, t) = 0, C(x, \pm \infty, t) = 0, t \ge 0 \\ \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} nCd_x d_y = m \end{cases}$$
(1)

$$C(x,y,t) = \frac{m/n}{4\pi t \sqrt{D_L D_T}} \exp\left\{-\frac{(x-ut)^2}{4D_L t} - \frac{y^2}{4D_T t}\right\}$$
(2)

图 1(来自文献[17])表明通过模型的解析解

对试验值进行数据拟合时,浓度下降段相差较大, 溶质浓度降为本底值的时间比理论值慢了很多, 说明在实际情况中,污染物在理论时间内并没有 消散,仍有残留,经过较长一段时间才逐渐消散, 试验值与解析解拟合值相差较大。基于传统对 流-弥散方程描述污染物运移会出现拖尾现象问 题,以及无法描述拖尾现象,本文尝试建立描述浓 度下降段拖尾现象的理论模型。

拖尾现象主要发生在浓度下降段,因此在讨 论拖尾现象时,单独考虑 C-t 曲线的下降段。在峰 值时间处将 C-t 曲线分开讨论,C-t 曲线下降段从 峰值时间 t_m 开始,各组试验 t_m 不同,为方便研究, 统一去掉峰值时间,即 t-t_m。从图 2 可以看出,C-t 曲线下降段从峰值时间开始,浓度随时间变化接 近于指数衰减分布,因此认为 C-t 曲线下降段符合 指数衰减规律,尝试基于指数衰减函数对 C-t 曲线 下降段进行拟合。Moser^[18]等人根据点稀释定理, 建立了描述示踪剂在某一点处稀释的模型:

$$C_{t=} C_0 e^{-Bt} \tag{3}$$

其中: C_0 为初始浓度;t 为时间;B 系数与流量以及 滤水管半径有关。氯化钠溶液浓度与电导率呈线 性相关,即 $C_0/C_t = N_0/N_t$,代入式(3)中得:

$$N_{t=} N_0 \mathrm{e}^{-Bt} \tag{4}$$

该模型描述了某一点在 t₀ 时刻,浓度从初始浓度 C₀开始,随着时间不断变化的过程,这一过程和二 维弥散试验中 C-t 曲线下降段较为相似,基于该模 型,对式(4)进行修改,建立相关指数衰减模型,用 以描述 C-t 曲线下降段。

$$N_{t} = N_{0} e^{-\alpha(t-t_{m})-\beta}$$
(5)

其中: N_t 为某时刻的电导率, N_0 为投源孔初始浓度, α , β 为参数,t为时间, t_m 为峰值时间。采用图 1(文献[17])中的数据对公式(5)进行拟合,结果 如图 2 所示, R^2 均在 0.98 以上,说明拟合效果 较好。

为研究式(5)中参数 α,β 的含义,对式(5)两 边同时取对数,得式(6):

$$\ln \frac{N_0}{N_t} = \alpha (t - t_m) + \beta \tag{6}$$

式(6)是一个以 $t-t_m$ 为自变量, $\ln \frac{N_0}{N_t}$ 为因变量的 一次线性函数, α 为斜率, 表示浓度随时间变化速 率,显然, α 越大, 浓度变化速率越快, 浓度下降速 率也越快, 即拖尾时间越短。 β 为截距, 当 $t-t_m=0$ 时, $\beta = \ln \frac{N_0}{N_m}$, 因此, β 为和污染物浓度有关的参 数, 为投源孔初始浓度与测孔峰值浓度的比值, β 越大, 则测孔 C-t 曲线的浓度峰值越小。为检验 公式(5)的可行性及各参数的影响因素, 自行设计 了室内二维弥散试验进行验证。

2 试验部分

2.1 实验装置

为了验证上述指数衰减模型的可行性,讨论 模型中参数 α,β 的含义及影响因素,找出污染物 浓度、水力梯度以及距离对拖尾现象的影响规律。 为此开展常水头下室内二维弥散试验,试验装置 如图 3 所示,该装置能够较好地模拟不同水力梯度 和不同污染物浓度下污染物的运移情况。自制透 明有机玻璃长方形试验槽,模型的上游为进水室, 下游为出水室,填土槽尺寸为 900 mm×400 mm× 90 mm,填土槽位于两块过滤板之间,过滤板的作 用是缓冲水流,保证弥散试验过程中流场始终为 二维稳定流场。将 PVC 管进行钻孔打眼,作为室 内弥散试验所用的观测井,并在外围用两层 80 目 滤网进行包裹和绑扎,防止砂土进入测井内造成 堵塞,又能保证水和溶质顺利通过测井。弥散试 验中各个测孔的分布图如图 4 所示,试验前,按方 案设置好各个观测孔,并进行编号,从投源孔开始 为0—9#。在二维弥散试验中,投源孔的作用是投 放示踪剂,距离上游进水室 1 500 mm,观测孔分为 主测孔和旁测孔,每个观测孔直径均为 32 mm。

图 3 试验模型装置图 Fig. 3 Test model device diagram

2.2 试验材料和试验方案

由于土体非均质性对弥散试验拖尾现象影响 程度较大,为研究拖尾现象随其他弥散因素变化 的规律,本文选取均匀中砂作为试验土样,排除土 体非均质性的影响。试验土样取自长江淡水沙, 筛选粒径 $d \le 2 \text{ mm}$ 的砂样,为保证土样中不存在 其他杂质干扰试验结果,填样前使用清水洗涤。 试验砂样的级配曲线如图 5 所示,从级配曲线看 出,粒径大于 0.25 mm 的颗粒超过全重的 50%,根 据《建筑地基基础设计规范》的砂土分类,该土样 为中砂。其不均匀系数 $C_u = d_{60}/d_{10} = 0.35/0.18 =$ 1.94<5,颗粒均匀,为均匀中砂。用此砂样为试验 土样,土样孔隙均匀,可看作为均质土体。

本试验采用 NaCl 作为示踪剂,通过电导率仪 实时监测各监测孔中的电导率,然后通过电导率 与 NaCl 浓度的关系转换成 NaCl 的浓度,然后通 过后续计算求解。图 6 为 NaCl 溶液电导率与浓度 关系图,由图可知两者为正比关系,因此可以用电 导率仪来监测土体中的电导率,来代表土体中污 染物浓度的大小。

图 6 NaCl 溶液电导率与浓度关系 Fig. 6 The relationship between the conductivity and concentration of NaCl solution

为研究污染物浓度和水力梯度以及距离和拖 尾现象之间的关系,本文设计4组不同污染物浓度 以及4组不同水力梯度下的试验方案,通过调节水 箱高度改变水力梯度(试验模型所在高度为下游 高度,水箱高度为上游高度),通过投放不同浓度 的盐溶液改变污染物浓度。为方便表示,污染物 浓度按以下公式计算:投盐质量(g)/溶液总质量 (g),四组污染物浓度分别为5%、10%、15%、20%。 具体试验方案如表1所示。

2.3 试验步骤

本次室内二维弥散试验过程主要分为以下几 个步骤:装样、稳定流场,投放示踪剂,实时监 测等。

表1 试验方案 Tab.1 Test schemes

组	下游高	上游高	水头	渗径/	′ 水力	投盐浓	平均流量/	渗透流速/
别	度/cm	度/cm	差/cm	cm	梯度	度/%	$(mL \cdot min^{-1})$	$(cm\boldsymbol{\cdot}s^{-1})$
1	90	110	20	90	0. 222	5	380	0.017 6
2	90	110	20	90	0.222	10	380	0.017 6
3	90	110	20	90	0.222	15	380	0.017 6
4	90	110	20	90	0.222	20	380	0.017 6
5	90	100	10	90	0.111	10	240	0.011 1
6	90	120	30	90	0.333	10	490	0.0227
7	90	130	40	90	0.444	10	510	0.023 6

2.3.1 装样

装样前在模型槽四周涂上凡士林,防止土体 两侧的流速过大,保证流场的稳定。分层装样,将 试验晒干土样按照试验方案设定的孔隙比(本次 试验孔隙比设为 0.7)分三层进行装样。装样完成 后,在土样上方覆盖一层 1 mm 厚的粘土层,防止 土体上方流速过大,对实验结果造成影响。装样 完成后,缓慢提高与上游进水室连接的水头,当水 头高度略高于土样高度时,稳定水头,使土样处于 饱和状态,为稳定土样中的流场,完全排除土样中 的气泡,将土样持续饱和 48 h。

2.3.2 投放示踪剂

选取瞬时投放作为本次试验污染物的投放方式。提前制备好 NaCl 溶液,选用长条塑料袋,宽度为6 cm,长度为80 cm,将制备好的 NaCl 溶液倒入 塑料袋中,将塑料袋缓慢放入投源孔底部静置,待 1 h后,待土样中的流场稳定之后,使用刀片将塑 料袋割破,将塑料袋中的 NaCl 溶液流出,待塑料袋 中的 NaCl 溶液全部流出后,缓慢拿出塑料袋,保证 流场的稳定,随后进行各观测孔的检测。

2.3.3 检测

在投源孔投放示踪剂后,通过电导率仪按照 测孔编号顺序对每个测孔进行电导率检测,对于 每个测孔,相隔大致 5 min 读取一次数据,当每个 测孔的数据都从初始值到达峰值再降为初始值之 后,结束试验,之后开始下一组试验。

3 试验结果及分析

在本次二维弥散试验中,各组试验下均存在 程度不一的拖尾现象,电导率下降段时间远大于 上升段,如之前所述,应用二维对流-弥散方程难 以描述电导率下降段,无法准确描述电导率到达 本底值的时间,严重影响到污染地区的修复。为 此本文将各组试验电导率下降段单独进行研究,

图 7 不同水力梯度和不同浓度 1#测孔试验指数衰减拟合

Fig. 7 Fitting of exponential decay for different hydraulic gradients and different concentrations of 1# pore test

在穿透曲线峰值和峰值时间处,将穿透曲线分为 电导率上升段和电导率下降段,通过上述指数衰 减模型对二维弥散试验浓度下降段进行拟合,发 现各组试验拟合效果均较好,由于篇幅所限,部分 拟合结果如图7所示,图7显示了在不同水力梯度 和不同浓度下1#测孔试验指数衰减拟合结果,由 图可知各条模拟曲线的相关系数均大于0.95,拟 合程度较高,模拟效果较好,因此指数衰减模型可 以较好地模拟污染物在各个测孔中从峰值浓度逐 渐衰减的过程以及浓度下降段的拖尾现象。

通过指数衰减模型对试验数据进行拟合,得 到了不同试验条件下的 α,β ,为了研究 α,β 与试 验因素间的关系,对 α,β 的定义进行验证,并进行 相关分析,把 α,β 值进行整理(表2、表3)。

表 2 各组试验下 α 值 Tab. 2 α value under each group of experiments

4日 見止	测孔							
纽刑	1	2	3	4	5	6	8	
1	0.067	0. 117	0.065	0.017	0.016	0.015	0.008	
2	0.041	0.095	0.043	0.017	0.017	0.015	0.007	
3	0.031	0.075	0.030	0.016	0.020	0.018	0.006	
4	0.025	0.070	0.028	0.014	0.021	0.019	0.008	
5	0.029	0.050	0.030	0.015	0.016	0.013	0.005	
6	0.047	0.104	0.049	0.018	0.033	0.022	0.009	
7	0.052	0. 101	0.066	0.020	0.042	0.024	0.009	

3.1 污染物浓度与 α, β 关系

溶质运移主要基于对流作用以及分子扩散作 用和机械弥散作用,分子扩散作用主要与污染物 浓度有关,而污染物浓度是溶质运移的关键因素 之一,图 8 为不同浓度下指数衰减方程拟合得到的 α值,图 8(a)(b)为同一横截面三个观测孔的 α

	表3各组	组试验	ightleftrightleft	直		
Tab. 3 β	value under	each	group	of e	experiment	s

相見山	测孔							
纽刑	1	2	3	4	5	6	8	
1	1.662	0.905	1. 397	3.134	2.679	2.917	2. 597	
2	1.510	0. 989	1.365	3.150	2.801	3. 177	2.854	
3	2.220	1.641	2. 197	3.713	3.505	3.732	4.092	
4	2.323	1. 799	2.331	3. 891	3.707	3.909	4.460	
5	1. 559	0.972	1.428	3. 143	2.854	3. 185	2.962	
6	1.477	0. 979	1.307	3.053	2.700	3.160	2.945	
7	1.444	1.041	1.336	3.066	2.650	3.150	2.941	

值,排除距离因素的影响。由图 8 可知各测孔的 α 值随着浓度变化发生较大的变化,随着污染物浓 度的上升,各个测孔对应的 α 值均呈下降趋势,说 明在相同的水力梯度下,污染物浓度越大,污染物 的衰减速率越慢,拖尾时间也就越长,另外,图中 显示 2#和5#两个主测孔的α值均比其同一截面的 旁测孔大,说明旁测孔的污染物衰减速率比主测 孔小,意味着在同一横截面处旁测孔的拖尾时间 比主测孔的拖尾时间大,即旁测孔的拖尾效应比 主测孔的拖尾效应严重。

图 9 为不同浓度下指数衰减方程拟合得到的 β 值,同样排除距离的影响,当浓度发生变化时,对 应的β 值也发生较大的变化。由于污染物浓度不 同,初始投盐孔电导率有很大不同,其相应峰值电 导率也不同,但从图 9 可知,在同一横截面上,β 值 随浓度的增加而增大,即投源孔初始浓度与测孔 峰值浓度的比值随浓度的增加而增大。且在同一 浓度下,主测孔的β 值要比同一截面的旁测孔的 值小,说明在同一浓度下,主测孔的C-t 曲线的峰 值浓度要大于相应旁测孔的峰值浓度。

 5
 10
 15
 20
 2.6
 5
 10
 15

 5
 10
 15
 20
 5
 10
 15

 浓度/%
 (a) 1--3#测孔
 (b) 4--6#测孔

 图 9 不同浓度下的β值

Fig. 9 β value at different concentrations

3.2 流速与 α, β 关系

机械弥散作用是溶质运移的关键因素之一, 为了研究 α , β 值是否与机械弥散存在联系, 即 α , β 值是否与流速有关,通过指数衰减模型对不同水 力梯度下的四组弥散试验拟合,得到不同流速下 的 α . β 值,讨论 α . β 值与流速间的关系。图 10 为 不同水头高度下的指数衰减方程拟合得到的 α 值,流速与水头高度成正相关,可以通过讨论水头 高度与 α 值的关系得到流速与 α 值的关系。对同 一横截面的三个观测孔进行研究,排除距离因素 的影响。由图 10 可知各个测孔的 α 值均随着水 头高度的增加而增大,说明随着流速越大,C-t曲 线下降段衰减速度越快,拖尾时间越短,同时两个 主测孔的 α 值比其两侧旁测孔的 α 值大,说明不 论何种水头高度, 主测孔的 C-t 曲线下降段衰减 速率要大于旁测孔的衰减速率,即主测孔的拖尾 时间小于其两侧旁测孔的拖尾时间。

图 11 为不同水头高度下的指数衰减方程拟合 得到的β值。由图可知,当水头高度发生变化时, 各测孔的β值变化幅度较小,说明不同水头高度对 β值基本没影响,即流速的变化不会改变各测孔的 峰值浓度,β值与流速无关。同时,两个主测孔的β 值均小于同一横截面旁测孔的β值,说明在同一水 头高度下,主测孔 C-t 曲线的峰值浓度要大于相应 两侧旁测孔的峰值浓度。

20

3.3 距离与 α, β 关系

图 12 为不同距离的 3 个主测孔由指数衰减方 程拟合得到的 α 值,从而排除流向的影响。不论 何种水头高度和浓度,α 值均随着距离的增加而降 低,说明随着距离的增加,即离投源孔越远,*C-t* 曲 线下降段衰减速度越慢,拖尾时间越长,拖尾现象 越严重。

图 13 为不同距离的 3 个主测孔由指数衰减方 程拟合得到的 β值,从而排除流向的影响。由图

13 可知不论何种水头高度和浓度,β 值均随着距 离的增加而增大,说明随着距离的增加,即距离 投源孔越远,C-t曲线浓度峰值就越小,即污染物 从投源孔运动到远处是浓度峰值逐渐递减的 过程。

4 结论

1)各组试验均存在严重的拖尾现象,污染物 浓度降为本底值的时间远大于理论值。

Fig. 13 β value at different distances

为此将试验穿透曲线分为上升段和下降段,通过 建立指数衰减模型对 C-t 曲线下降段拟合,拟合 程度很高,说明污染物从浓度峰值降为本底值的 过程为指数衰减过程,指数衰减模型能更好地描述 C-t 曲线浓度下降段的拖尾现象。

2)指数衰减模型中 α 是与污染物运移过程中 弥散作用有关的参数,表示 C-t 曲线下降段的浓 度衰减速率,α 越大,浓度衰减速率越快,拖尾时间 越短。β 为和污染物浓度有关的参数,表示投源孔 初始浓度与其他测孔峰值浓度的比值,β 越小,C-t 曲线的浓度峰值越大。

3) 污染物浓度越大,则 α 值越小,衰减速率越 慢,拖尾时间越长,同时 β 值越大,投源孔初始浓 度与测孔峰值浓度的比值越大;水力梯度越大时, 流速越大,则 α 值越大,拖尾时间越小,而 β 值基 本不变,与流速无关;距离投源孔的位置越远, α 值 越小,衰减速率越慢,拖尾时间越大, β 值也越小, 即 C-t 曲线浓度峰值越小。

参考文献:

- [1] 罗 兰. 我国地下水污染现状与防治对策研究[J]. 中国 地质大学学报:社会科学版,2008(2):72-75.
- [2]张新钰,辛宝东,王晓红,等.我国地下水污染研究进展 [J].地球与环境,2011,39(3):415-422.
- [3]洪梦悦. 地下水污染及其修复技术[J]. 环境与发展, 2019,31(2):88-89.
- [4]杨清龙,彭思毅.我国地下水污染原因分析以及策略思考[J].环境科学导刊,2020,39(S1):34-35.
- [5]石元春. 盐渍土的水盐运动[M]. 北京:北京农业大学 出版社,1986.
- [6] DENG Z, SINGH V P, BENGTSSON L. Numerica l Solution of Fractional Advection-dispersion Equation [J]. J. Hydraulic Engineering, 2004, 130(5): 422-431.
- [7]常福宣,吴吉春,薛禹群,等.考虑时空相关的分数阶对

流-弥散方程及其解[J].水动力学研究与进展,2005, 20(2):233-240.

- [8] HUANG G, HUANG Q, ZHAN H. Evidence of One-dimensional Scale-dependent Fractional Advection-dispersion
 [J]. J. Contam. Hydro 1, 2006, 85:53-71.
- [9] HUANG Q, HUANG G, ZHAN H. A Finite Element Solution for the Fractional Advection-dispersion Equation [J]. Advances in Water Resources, 2008, 31: 1578-1589.
- [10] NEUMAN S P, TARTAKOVSKY D M. Perspective on Theories of non-Fickian Transport in Heterogeneous Media [J]. Advances in Water Resources, 2009, 32 (5): 670-680.
- [11] SIMMONS C T, PIERINI M L, HUTSON J L. Laboratory Investigation of Variable-Density Flow and Solute Transport in Unsaturated-Saturated Porous Media [J]. Transport in Porous Media, 2002, 47(2): 215-244.
- [12] LANGEVIN C D, GUO W. MODFLOW/MT3DMS-Based Simulation of Variable-Density Ground Water Flow and Transport[J]. Groundwater, 2006, 44: 339-351.
- [13] 王泽坤,严小三,宋 羿,等. 含透镜体多孔介质中溶质 二维运移实验与模拟研究[J]. 合肥工业大学学报:自 然科学版,2018,41(7):968-972.
- [14]余期冲,祝晓彬,吴吉春,等.死端孔隙对溶质运移影 响的实验研究[J].水文地质工程地质,2017,44(4): 160-164.
- [15]徐玉璐.多孔介质中污染物运移及弥散系数对流速依 赖性实验研究[D].合肥:合肥工业大学,2017.
- [16]陈崇希,李国敏.地下水可溶污染物运移理论及模型 [M].武汉:中国地质大学出版社,1996.
- [17] WIERENGA P J, VAN GENUCHTEN M T. Solute Transport Through Small and Large Unsaturated Soil Columns[J]. Ground Water, 1989(27):35-42.
- [18] MOSER H, NEUMAIER F, RAUERT W. Die Anwendung Radioaktiver Isotopen in der Hydrologie [J]. Ztschrift Der Deutschen Geologischen Gesellschaft, 1957 (2): 225-231.