文章编号:1673-9469(2024)05-0078-07

DOI:10.3969/j.issn.1673-9469.2024.05.011

基于均匀设计的中深层 U 型地埋管取热潜力估算

鲍玲玲1,2,郭晓凯1,李建伟1,牛国庆1,高易达1,杨立嘉1

(1.河北工程大学能源与环境工程学院,河北邯郸056038;2.河北省暖通空调技术创新中心,河北邯郸056038)

摘要:为了对中深层U型井下换热系统的取热潜力进行估算,利用中深层U型地埋管换热模型 编程进行了模拟验证,综合考虑土壤导热系数、竖直管长、地温梯度、水平管长、土壤密度与恒温 层温度6个因素,采用均匀试验设计的方法设计了模拟试验方案,使用多元线性回归的方法对6 个因素与取热量的关系进行了分析,建立了取热量的预测方程,结果表明,利用土壤导热系数、竖 直管长、地温梯度、水平管长与恒温层温度5个因素即可对中深层U型地埋管换热器最大稳定换 热量进行预测,最大稳定换热量预测值与模拟值的平均误差为6.76%,最大相对误差为-9.88%。 关键词:中深层U型地埋管;取热潜力估算;均匀试验设计;多元回归

中图分类号:TU83

文献标识码:A

Estimation of Heat Removal Potential of Medium-Deep U-shaped Buried Pipe Based on Uniform Design

BAO Lingling^{1,2}, GUO Xiaokai¹, LI Jianwei¹, NIU Guoqing¹, GAO Yida¹, YANG Lijia¹

(1. School of Energy and Environmental Engineering, Hebei University of Engineering, Handan, Hebei 056038, China;2. Hebei HVAC Technology Innovation Center, Handan, Hebei 056038, China)

Abstract: In order to estimate the heat extraction potential of the U-shaped underground heat exchange system in the middle and deep layers, a simulation verification was carried out using a U-shaped buried pipe heat exchange model programming in the middle and deep layers. Taking into account six factors including the soil thermal conductivity, vertical pipe length, ground temperature gradient, horizontal pipe length, soil density, and constant temperature layer temperature, a uniform experimental design method was used to design a simulation test plan. Multiple linear regression method was used to analyze the relationship between the six factors and the heat extraction, and a prediction equation for the heat extraction was established. The results shows that the maximum stable heat transfer of the U-shaped buried pipe heat exchanger in the middle and deep layers can be predicted using five factors including the soil thermal conductivity, vertical pipe length, ground temperature gradient, horizontal pipe length, and constant temperature. The maximum stable heat transfer prediction value is obtained. The average error compared to the simulated value is 6.76%, and the maximum relative error is -9.88%.

Key words: medium-deep U-shaped buried pipe; estimation of heat extraction potential; uniform experimental design; multiple regression

碳排放导致的全球气候变暖已成为人类所需 应对的重大挑战,中深层U型地埋管换热系统因 具有清洁环保、占地面积小、换热量大、稳定高效 等特点逐渐成为研究焦点,工程上在对中深层井 下换热系统设计时需要对井下换热系统的取热能 力进行估算,由于中深层U型地埋管换热量的影 响因素较多^[14],且各参数范围差别较大,目前研 究多集中于单因素对换热的影响分析,无法简便

收稿日期:2023-09-18

基金项目:河北省自然科学基金资助项目(E2023402072)

作者简介:鲍玲玲(1982-),女,河北藁城人,博士,教授,从事传热传质、中深层地热资源利用等方面的研究。

地对不同参数组合下中深层 U 型地埋管换热量进 行估算。

为简便估算中深层 U 型井下换热系统的取热 能力,本文通过均匀试验设计的不同方案,利用经 过验证的中深层 U 型地埋管换热模型进行模拟, 采用多元线性回归分析了土壤导热系数、竖直管 长、地温梯度与水平管长等影响因素与最大稳定 换热量之间的关系,并通过模拟数据验证了回归 模型的可靠性,利用本文结论可以直接估算不同 参数下的中深层 U 型地埋管换热系统的取热潜 力,为系统的工程设计提供指导。

1 均匀试验设计

均匀试验设计可以对多因素多水平影响下的 目标进行分析,其优势在于能够通过较少的试验 次数达到试验的目的,该方法在导弹设计领域取 得了显著的效果,逐步推广到了医疗、机械等其他 领域^[5-7]。通过均匀试验设计可以寻求最优的试 验条件组合,也可以建立定量描述指标与因素之 间关系的数学模型,对不同土壤物性参数、设计参 数下的中深层 U 型地埋管最大稳定换热量进行估 算。均匀试验设计的一般步骤是先确定各因素与 其对应水平,选取适当的均匀设计表进行试验方 案的确定,再对试验方案进行试验得到最终结果, 最后对数据进行分析处理。

1.1 模型与验证

本文以廖倞昀^[8]、王雪^[9]建立的中深层U型 地埋管传热模型为基础进行计算。将实际工程中 的U型地埋管简化为下行管、水平管与上行管3 个部分。对于钻孔内传热过程,U型地埋管换热器 出水温度由式(1)—(3)表示:

$$T_{\rm f1,out} = \exp\left(\frac{1}{McR_1}z\right) \times (T_{\rm in} - T_{\rm b1}) + T_{\rm b1} \quad (1)$$
$$T_{\rm f2,out} = \exp\left(\frac{1}{McR_2}x\right) \times (T_{\rm f1,out} - T_{\rm b2}) + T_{\rm b2} (2)$$
$$T_{\rm f3,out} = \exp\left(-\frac{1}{McR_3}z\right) \times (T_{\rm f2,out} - T_{\rm b3}) + T_{\rm b3} \quad (3)$$

式中, $T_{f1,out}$, $T_{f2,out}$, $T_{f3,out}$ 分别为下行管、水平管与 上行管出口流体温度, \mathbb{C} ; T_{b1} , T_{b2} , T_{b3} 分别为下行 管、水平管与上行管井孔壁面温度, \mathbb{C} ; R_1 , R_2 与 R_3 分别为下行管、水平管与上行管与岩土之间的 热阻, \mathbf{m} ·K/W;M为循环介质质量流量,kg/s; T_{in} 为下行管进水温度, ℃; *T*_{out} 为上行管出水 温度, ℃。

钻孔壁处的瞬变温度响应可由下式表示[8]:

$$\Delta T_{\rm b}(r,z,\tau) = \frac{cM(T_{\rm out} - T_{\rm in})}{2\pi\lambda H}$$

$$\begin{bmatrix} \int_{0}^{H} f(r,z,\tau) \,\mathrm{d}h - \int_{-H}^{0} f(r,z,\tau) \,\mathrm{d}h \end{bmatrix} \quad (4)$$

$$f(r_{\rm b},z,\tau) = \frac{1}{4\sqrt{r_{b}^{2} + (z-h)^{2}}}$$

$$\operatorname{erf} c\left(\frac{\sqrt{r_{b}^{2} + (z-h)^{2}}}{2\sqrt{\alpha\tau}}\right) + \operatorname{erf} c\left(\frac{\sqrt{r_{b}^{2} + (z-h)^{2}}}{2\sqrt{\alpha\tau}}\right) \end{bmatrix} \quad (5)$$

式中, λ 为土壤导热系数, W/(m·K);r 为坐标系 空间距离, $r = \sqrt{x^2 + y^2 + (z - H)^2}$, m;z 为轴向 坐标, m; τ 为时间, s; h 为计算深度, m; c 为流体体 积比热容, J/(m³·K); H 为钻孔深度, m; α 为土壤 热扩散系数, m²/s。

为验证以上计算模型以及进一步分析模型与 实测数据的误差,现依据冀南某U型对接井项目 的实际运行数据来进行验证,该井钻孔深度为 2 500 m,水平长度为648 m,地温梯度为2.7× 10⁻² ℃/m,进水温度为10℃,钻孔孔径为0.432 m, 管道内径为0.292 m,壁厚为0.010 m,管壁定容 比热为3 800×10³ J/(m³ · K),导热系数为 41 W/(m·K),回填材料体积比热容为2 500× 10³ J/(m³ · K),导热系数为1.5 W/(m·K),循环 水流量为24.2 kg/s,土壤恒温层温度为15.7 ℃。 岩土地层分为五层,由于每层岩土的岩性构成有 较大差别,故进行分层计算,分层与岩土的物性参 数如表1 所示,热扩散系数由表1 中各分层土壤导 热系数与体积比热容导出。

将上述参数作为初始计算参数进行模拟,将 模拟得到的出水温度与实际出水温度进行对比, 对比结果如图1所示,模拟温度与实际温度最大温 差1.39℃,平均温差1.05℃,最大相对误差为 11.22%,平均误差为9.50%,可以认为该中深层U 型地埋管传热模型是可靠的。

1.2 均匀试验设计

1.2.1 因素与水平范围

首先确定中深层 U 型地埋管换热的影响因素,再确定每个影响因素各自的水平。中深层 U 型地埋管换热器换热影响包括钻孔深度、土壤物 性参数等多种影响因素,张育平等^[10]研究表明地

	Tab. 1 Geotechnical la	yering and geotechnical properties	
深度/m	地层岩性特征	土壤导热系数/(W・m ⁻¹ ・K ⁻¹)	体积比热容/(kJ・m ⁻³ ・K ⁻¹)
0~420	砂粘土、中砂、粉砂等粘性土砂层	1.8	1 379
420~1 040	浅色粘土岩、砂质黏土、粉砂岩	3. 5	1 300
1 040~1 540	上部为泥岩与粉砂岩互层, 中部泥岩为粉砂岩、泥岩	2.6	1 450
1 540~2 290	泥岩、砂质泥岩、粉砂岩、 泥质粉砂岩不等厚度互层	2.6	1 450
2 260~2 500	上部夹多层泥灰, 底部为浅色细砂岩和含砾砂岩	2. 6	1 450

温梯度、竖直管长、土壤导热系数、进水温度、水平 管长与土壤密度对中深层 U 型地埋管换热器换热 量有显著影响,对循环流量有一定影响,对土壤热 容影响可以忽略。

本文旨在对不同条件下中深层U型地埋管换 热器在长期运行条件下的稳定取热能力进行估 算,由于换热量随时间变化,故首先需要确定稳定 换热的时间,使用上述参数进行了一个供暖季 (2880 h)的模拟,模拟结果如图2所示,从图中可 以看出出水温度随时间降低后趋于稳定,720 h后 的出水温降占比整个供暖季温降的81.5%,1440 h 的出水温降占比整个供暖季的92.3%,故本文将 1440 h 的出水温度认为是中深层U型地埋管换 热器在长期连续运行条件下的稳定出水温度,此 时的换热量也认为是中深层U型地埋管换热器在 长期连续运行条件下的最大稳定换热量。

对其他因素进行分析:地温梯度、竖直管长、 土壤导热系数、水平管长与土壤密度对应不同地 区不同管长设计的参数,故纳入研究因素;进水温 度与循环流量属于系统可以调节的参数,根据模

型需要确定一个具体值,鲍玲玲等^[11]研究表明,在 其他条件不变的情况下,进水温度越低,取热量越 大,进水温度不低于4℃,可以认为在其他条件不 变的情况下进水温度为4℃时的系统换热量为最 大换热量,故不将进水温度作为研究因素;循环流 量对换热量有一定影响,呈现先增长后稳定的趋 势,换热量在稳定后可以认为此时的流量与系统 换热量无关,此时的换热量可以认为是系统的最 大换热量,对于不同设计参数下的系统换热量稳 定时的流量具体取值应进一步分析;张育平等^[10] 的研究未考虑各地区的恒温层温度对换热量的影 响,需进一步分析,因此本文设计了模拟试验分析 不同工况下循环流量与恒温层温度对中深层 U 型 地埋管换热器在长期运行条件下换热量的影响, 不同工况下的模拟参数设计如表 2 所示。

分析循环流量对换热量的影响时,除以上5个 参数依照表2设置外,其余参数参照冀南某U型 对接井项目数据设置。中深层U型地埋管换热器 换热量随流量变化模拟结果如图3所示:随着流量 的增大,不同U型地埋管换热器的取热量均为逐 渐增大后趋于稳定,在流量为29.00 kg/s之前的 取热量变化占比全部取热量变化幅度的94.71%,

Tab. 2 Settings of simulation parameters								
工况	竖直管长/m	水平管长/m	地温梯度/(℃・m ⁻¹)	土壤导热系数/(W・m ⁻¹ ・K ⁻¹)	土壤密度/(kg・m ⁻³)			
1	2 000	200	150.0	0. 500	1 500			
2	2 375	650	212.5	1. 325	1 875			
3	2 750	1 100	275.0	2. 150	2 250			
4	3 125	1 550	337.5	2.975	2 625			
5	3 500	2 000	400_0	3 800	3 000			

表 2 模拟参数设置 Tab. 2 Settings of simulation parameters

Fig. 3 Variation of heat extraction with flow rate

93.56%,92.34%,91.19%,90.03%,可以认为当流 量大于某一值时,中深层U型地埋管换热器的出 水温度与换热量将趋于稳定,此时流量对换热量 的影响可以忽略,故不将循环流量作为研究因素。 由于不同设计管长参数下换热稳定时的流量不 同。为尽量减小影响,本文后续试验将流量设置 为71 kg/s。

分析恒温层温度对换热量的影响时,除以上5 个参数依照表2设置外,流量设置为71 kg/s,其余 参数参照冀南某U型对接井项目数据设置。中深 层U型地埋管换热器换热量随恒温层温度变化模 拟结果,如图4所示,随着恒温层温度的增大,不同

图 4 取热量随恒温层温度变化

Fig. 4 Variation of heat extraction with the temperature of the constant temperature layer

U型地埋管换热器的换热量也随之增大,数据显示 恒温层温度由 5.0 ℃增长到 25.0 ℃,换热量分别 增长了 350,409,470,530,538 kW;恒温层温度扩 大了 400%的情况下,换热量分别增长了 108.36%, 62.68%,39.54%,27.01%,19.38%,数据表明恒温 层温度对不同参数下的 U型井换热量的影响大小 不同,故本文将恒温层温度这一参数作为研究因 素之一。

综上,本次试验以6个因素作为分析因素。各 因素及取值范围如表3所示。

表 3 因素取值范围 Tab. 3 Range of factor values

竖直	水平	地温	土壤导热	土壤	恒温层
管长	管长	梯度/	系数/(W・	密度/	温度
/m	/m	$(^{\circ}C \cdot m^{-1})$	$m^{-1} \cdot K^{-1}$)	$(kg \cdot m^{-3})$	∕°C
2 000	200	150	0.5	1 500	5
3 500	2 000	400	3.8	3 000	25

其中,竖直管长依据中深层本身的定义设置, 地温梯度依据王贵玲等^[12]相关研究设置,刘晓燕 等^[13]认为恒温层温度等于年均气温,故恒温层温 度依据部分城市的年均气温设置,水平管长则依 据常用范围进行设置,依据《地热资源地质勘查规 范》(GB 11615—2010)所给出的常见岩土热物性 进行土壤密度与土壤导热系数的设置,含水率 8.3%的石英砂的土壤密度较小为1650 kg/m³,花 岗岩的土壤密度较高为2660 kg/m³,砂砾石的土 壤导热系数较低为0.77 W/(m·K),石灰岩的 土壤导热系数较低为0.77 W/(m·K),以上参 数均对上下限进行了适当扩展以更好地研究各 因素对中深层 U 型地埋管换热器最大稳定换热 量的影响。

1.2.2 均匀设计表的选取

均匀设计表由 U_n(q^s)或 U_n * (q^s)表示,其中 "U"表示均匀设计,"n"表示做 n 次试验,"q"表示 每个因素有 q 个水平,"s"表示该均匀设计表有 s 列," *"的有无代表两种不同的均匀设计表,带有 "*"的设计表通常具有更好的均匀性^[14]。对于 某一项试验设计,均匀试验设计有多种量表可供 选择,为得到合适的量表,可以遵循以下原则进行 选择:

(1)均匀设计表引入了偏差(D)的概念,偏差 值越小,均匀度越高,对于每一个U_n*(q^s)表都配 有一个对应的使用表,使用表中给出了选取 s 列的 偏差,应尽量选取偏差值小的量表。

(2)当有较多的因素与水平时,均匀设计试验 次数相对更少,但过于追求更少的试验次数可能 会导致后期对数据进行回归处理时无法建立有效 的数学模型。

对于本文研究对象,本文以土壤导热系数、竖 直管长、地温梯度、水平管长、土壤密度与恒温层 温度这6个因素进行试验设计,对于6因素的均匀 试验设计有 U₁₂ * (12¹⁰)、U₁₈ * (18¹¹)与 U₃₀ * (30¹²)等多种量表可供设计选择,依据上述原则,本文选择 U₃₀ * (30¹²)这一设计表进行试验设计,设计表如表 4 所示。

2 结果与分析

2.1 试验模拟结果

除试验选取的 6 个影响因素由均匀试验设计 表确定外,进水温度设置为 4 ℃,流量设置为 71 kg/s,模拟时间设置为 1 440 h,其余参数参照冀 南某 U 型对接井项目数据设置,在土壤导热系数、 竖直管长、地温梯度、水平管长、土壤密度与恒温 层温度不同水平组合影响下的出水温度与取热量 模拟结果如表 5 所示。

表 4 均匀试验设计表 Tab 4 Table of uniform experimental design

		140.	+ Tuble of uniform	n experimental design		
	竖直管长/	水平管长/	地温梯度/	土壤导热系数/	土壤密度/	恒温层温度/
1子29月	m	m	(°C ⋅ m ⁻¹)	$(\mathbf{W} \cdot \mathbf{m}^{-1} \cdot \mathbf{K}^{-1})$	$(\text{kg} \cdot \text{m}^{-3})$	°C
1	2 000	386	1. 276	1.979	2 380	21.6
2	2 052	634	2.138	3.572	1 707	17.5
3	2 103	882	3.000	1.638	2 638	13.3
4	2 155	1 131	1.190	3. 231	1 966	9.2
5	2 207	1 379	2.052	1.296	2 897	5.0
6	2 259	1 627	2.914	2.890	2 224	22.3
7	2 310	1 875	1.104	0.955	1 552	18.2
8	2 362	200	1.966	2. 548	2 483	14.0
9	2 414	448	2.828	0.614	1 811	9.9
10	2 466	696	1.018	2.207	2 742	5.7
11	2 517	944	1.880	3.800	2 069	23.0
12	2 569	1 193	2.742	1.865	3 000	18.8
13	2 621	1 441	0.931	3.459	2 328	14.7
14	2 672	1 689	1.793	1.524	1 656	10.6
15	2 724	1 937	2.655	3.117	2 587	6.4
16	2 776	262	0.845	1.183	1 914	23.7
17	2 828	510	1.707	2.776	2 845	19.5
18	2 879	758	2.569	0.841	2 173	15.4
19	2 931	1 006	0.759	2.434	1 500	11.3
20	2 983	1 255	1.621	0.500	2 431	7.1
21	3 034	1 503	2. 483	2.093	1 759	24.4
22	3 086	1 751	0.673	3.686	2 690	20. 2
23	3 138	2 000	1. 535	1.752	2 018	16. 1
24	3 190	324	2.397	3.345	2 949	11.9
25	3 241	572	0. 587	1.410	2 276	7.8
26	3 293	820	1. 449	3.003	1 604	25.0
27	3 345	1 068	2.311	1.069	2 535	20.9
28	3 397	1 317	0.500	2.662	1 862	16.8
29	3 448	1 565	1.362	0.728	2 793	12.6
30	3 500	1 813	2.224	2.321	2 121	8.5

	出水温度/	换热量/	延米换热量/	良利	出水温度/	换热量/	延米换热量/
序列	$\begin{bmatrix} \mathbf{F} \mathbf{\phi} \end{bmatrix} \qquad $	$(\mathbf{W} \cdot \mathbf{m}^{-1})$	戶列	$^{\circ}$ C	\mathbf{kW}	$(W \cdot m^{-1})$	
1	6.01	597	136. 16	16	5.65	490	84. 24
2	8.48	1 332	281.18	17	9.17	1 537	249.39
3	7.08	917	180. 16	18	6.37	705	108.18
4	6.82	840	154.38	19	6.38	708	103.06
5	5.98	588	101. 54	20	5.11	331	45.86
6	11.60	2 262	368.17	21	11.18	2 137	282. 21
7	5.44	429	66.00	22	9.89	1 752	221.06
8	7.12	928	188.46	23	8.51	1 342	162.14
9	5.18	352	66.75	24	11.75	2 307	344. 12
10	5.62	481	85.50	25	5.12	334	47.37
11	11.24	2 155	360. 39	26	10.90	2 052	277.06
12	9.20	1 547	244. 39	27	8.07	1 210	155.95
13	8.36	1 297	194.14	28	7.34	994	122.56
14	6.98	886	126.00	29	6.03	604	71.42
15	12.83	2 627	355.62	30	11.88	2 344	265.94

表 5 出水温度与换热量模拟结果 Tab. 5 Simulation results of outlet water temperature and heat extraction

对数据进行初步分析发现,第 15 组的出水温 度与换热量最高,从供暖的角度讲,显然第 15 组的 设计方案可以得到最大的换热量,第 15 组比第 30 组换热量高 3.5%,但第 15 组竖直管长与水平管 长均小于第 30 组,故从实际工程来看,两组取热 量相差不大的情况下第 15 组打井成本要小于第 30 组,故中深层 U 型地埋管换热器的设计需要 尽量选取土壤导热系数、地温梯度较高的地区。 17 个试验组合的延米换热量超过 150 W/m,第 6,11,24 组的延米换热量已经达到 300 W/m 以 上,相比中深层同轴套管系统不超过 150 W/m 的 取热功率,中深层 U 型埋管系统可以达到更高的 取热功率。

2.2 多元线性回归分析

为构建中深层 U 型地埋管换热器长期运行条件下的换热量预测模型,采用多元线性回归的方法对竖直管长、水平管长、土壤导热系数等 6 个因素与取热量之间的关系进行分析。数据分析分为两个步骤:首先采用 Pearson 系数检验各输入变量之间的相关性,然后采用线性回归方程表述各变量与目标值之间的关系^[15]。

对数据进行相关性及回归分析,结果发现线 性回归方程不能很好地拟合数据,原因可能在于 因素间的相互影响,故对数据进行构建交互项的 处理,将交互项纳入变量后再次进行分析处理,分 析结果表明,并非所有变量都与取热量存在明显 的线性关系,那么构建多元线性回归模型需要考 虑自变量的筛选问题,故采用逐步回归的方法进 行构建,在回归过程中去除与目标值相关性不高 的变量,利用 R² 作为判断依据,R² 介于 0~1,越接 近 1 则表明构建的模型对目标值的解释程度越 高^[15],最终得到的回归模型信息如表 6、表 7 所 示,可以发现构建的线性回归方程显著性小于 0.05,说明回归模型对目标变量的解释程度显著; Durbin-Watson 值为 2.268,说明变量间不存在自相 关性,回归模型可靠;回归平方和远大于残差平方 和,说明模型拟合较好^[15]。

表6回归模型

Tab. 6 Regression model							
R	R^2	调整后 R^2	F	显著性	Durbin-Watson		
0. 991	0.982	0.978	215	0.000	2.268		

表 7 回归模型方差分析

Tab. 7	Analysis	of	variance	of	regression	model	
					0		

	平方和	自由度	均方
回归	13 487 945	6	2 247 990
残差	240 282	23	10 447
总计	13 728 227	29	—

构建的回归模型系数信息如表 8 所示。根据 表 8 可以发现,回归模型对于一个中深层 U 型地 埋管换热器,其最大稳定换热量可以由土壤导热 系数、竖直管长、地温梯度、水平管长与恒温层温 度 5 个因素确定,构建的中深层 U 型地埋管换热 器最大稳定换热量估算拟合方程为

	Tab. 8 Coefficients of regression model							
亦昰	未标准	化系数	标准化系数	,	显茎灶	共线性统计		
又里	B 标准错误		一小正儿示奴	L	业有压	容差	VIF	
(常量)	-1 499. 781	138. 383	—	-10. 838	0.000	—	—	
$c imes \lambda$	195.827	12.878	0.676	15.207	0.000	0.385	2. 597	
a	0.390	0.059	0. 258	6.637	0.000	0.503	1.989	
$b imes \lambda$	0.135	0.014	0.332	9.653	0.000	0.645	1.551	
λ^2	1.539	0.236	0. 415	6. 528	0.000	0.188	5.309	
$a \times c$	0.111	0.023	0. 333	4.846	0.000	0.161	6. 222	
$c \times d$	-14.204	3.790	-0.335	-3.748	0.001	0. 101	9.901	

表 8 回归模型系数 Tab. 8 Coefficients of regression model

表 9 模型拟和误差

	Tab. 9 Fitting error of model									
定劢	竖直管长/	水平管长/	地温梯度/	土壤导热系数/	恒温层温度/	换热量/	预测值/	误差/		
11-21	m	m	$(^{\circ}C \cdot hm^{-1})$	$(\mathbf{W} \cdot \mathbf{m}^{-1} \cdot \mathbf{K}^{-1})$	°C	$\mathbf{k}\mathbf{W}$	$\mathbf{k}\mathbf{W}$	%		
1	2 618	624	164. 7	1.665	10.9	669	603	-9.88		
2	2 706	941	238.2	3.218	23.8	2 378	2 246	-5.57		
3	2 794	1 259	311.8	1.082	19.1	1 143	1 115	-2.48		
4	2 882	1 576	385.3	2.635	14.4	3 243	2 933	-9.56		
5	2 971	1 894	179.4	0. 500	9.7	424	450	6.28		

 $y_1 = -1 499.781 + 195.827c \times \lambda + 0.39a + 0.135b \times$

λ + 1.539 $λ^2$ + 0.111*a* × *c* − 14.204*c* × *d*(6) 式中,*y*₁ 为中深层 U 型地埋管换热长期运行工况下 的最大稳定换热量,kW;*a* 为竖直管长,m;*b* 为水平管 长,m;*c* 为地温梯度,℃/m;*d* 为恒温层温度,℃。

验证构建的回归方程需要将方程预测值与模 拟值进行对比,为避免极端水平因子组合的影响, 重新采用均匀试验设计的方法设计了因子组合, 任取其中5组数据进行模拟,模拟值与预测值对比 如表9所示,回归得到的拟合方程对于出水温度预 测的最大相对误差为-9.88%,平均误差为6.76%, 说明模型对系统最大稳定有较好的预测,可以认 为构建的回归模型是理想的。

考虑到该方程由模拟数据处理得到,根据前述部分模拟与实测的相对误差,在进行计算时取热量应乘以1.1,最终构建的中深层U型地埋管换热器最大稳定换热量估算方程如式(7)所示,利用式(7)可以对不同参数下的中深层U型地埋管换热器的最大稳定换热量进行估算。

1. $1y_1 = -1$ 499. 781 + 195. $827c \times \lambda + 0.39a + 0.135b \times \lambda + 1.539\lambda^2 + 0.111a \times c - 14.204c \times d$ (7)

在具体的工程设计时,某地的地温梯度,土壤 导热系数与恒温层温度是确定的,那么对于一个 固定需求的热负荷,竖直管长与水平管长两个参 数的关系可以由式(8)表示。

 $a = (-1\ 499.\ 781 + (195.\ 827c + 0.\ 135b + 1.\ 39\lambda) \times \lambda - 14.\ 204c \times d - 1.\ 1y_1)/(-0.\ 39 - 0.\ 111c)$

(8)

式(8)中含有竖直管长与水平管长两个不确 定值,实际工程中打井深度越深,单位深度打井成 本越高,设计人员可根据打井经济性来进一步确 定竖直管长与水平管长。

3 结论

1) 中深层 U 型地埋管换热器换热量随着流量 的增大,不同 U 型地埋管换热器的取热量均为逐 渐增大后趋于稳定。流量为 29.00 kg/s 之前的取 热量变化占全部取热量变化幅度的 94.71%, 93.56%,92.34%,91.19%,90.03%,可以认为当流 量大于某一值时,流量对换热量的影响可以忽略, 即流量与最大稳定换热量无关。

2)随着恒温层温度的增大,不同 U 型地埋管 换热器的取热量也随之增大,数据显示恒温层温 度由 5.0 ℃增长到 25.0 ℃,换热量分别增长了 350,409,470,530,538 kW,恒温层温度扩大了 400%的情况下换热量分别增长了 108.36%, 62.68%,39.54%,27.01%,19.38%,恒温层温度对 最大稳定换热量有一定的正相关关系。

(下转第94页)

mic and exergy analysis of a solar geothermal hybrid electric power plant using a novel combined cycle[J]. Energy Conversion and Management, 2017, 156: 542-554.

- [9] LEE K S. A review on concepts, applications, and models of aquifer thermal energy storage systems [J]. Energies, 2010, 3(6): 1320-1334.
- [10] COLLIGNON M, KLEMETSDAL Q S, MQYNER O, et al. Evaluating thermal losses and storage capacity in high-temperature aquifer thermal energy storage (ATES) systems with well operating limits: Insights from a studycase in the Greater Geneva Basin, Switzerland[J]. Geothermics, 2020, 85: 101773.
- [11] 王侃宏,谷铁柱,桂林平,等. 蓄热技术在太阳能-地源热泵中的应用及模拟[J].河北工程大学学报 (自然科学版),2008,25(1):63-67.
- [12] 刘肖,谭现锋,张丰,等.河北博野某地热系统现场阻垢试验及阻垢效果评价[J].河北工程大学学报(自然科学版),2022,39(3):83-92.
- [13] 刘帅, 刘志涛, 冯守涛, 等. 采暖尾水回灌对砂岩热

(上接第84页)

3) 对于中深层 U 型地埋管换热系统的设计, 选取地质条件较好的地区可以有效减少竖直管段 与水平管段的总长,提高系统的经济性。

4)回归模型表明土壤导热系数、竖直管长、地 温梯度、水平管长与恒温层温度5个因素即可确定 中深层U型地埋管换热量,5个因素对于最大稳定 换热量有正向影响,模型对最大稳定换热量的预 测值与模拟值最大相对误差为-9.88%,平均误差 为6.76%。

参考文献:

- LUO Y, XU G, CHENG N. Proposing stratified segmented finite line source (SS-FLS) method for dynamic simulation of medium-deep coaxial borehole heat exchanger in multiple ground layers [J]. Renewable Energy, 2021, 179: 604-624.
- [2] 孔彦龙, 陈超凡, 邵亥冰, 等. 深井换热技术原理及 其换热量评估[J]. 地球物理学报, 2017, 60(12): 4741-4752.
- [3] 刘洪涛,刘 俊,王沣浩,等.设计参数对中深层地埋 管换热器长期换热性能的影响研究[J].可再生能源, 2021,39(12):1594-1601.
- [4] 王 伟. 深层 U 型地热井仿真模拟及取热性能研究 [J]. 太阳能学报, 2022, 43(7): 477-484.
- [5] WANG N, YU M, ZHANG X, et al. Structural optimization of deflector within air-water direct contact tank based

储地温场的影响——以鲁北地区为例[J]. 地质评论, 2021, 67(5): 1507-1520.

- [14] 马捷, 王明育, 戴斌. 地下含水层的储能和过程特性的分析[J]. 华北电力大学学报, 2004, 36(6): 58-60.
- [15] 邹鹏飞, 王彩会, 杜建国, 等. 地热水系统采灌方案 模拟优化研究——以苏北农村清洁能源供暖示范区 为例[J]. 水文地质工程地质, 2023, 50(4): 59-72.
- [16] 单丹丹, 闫 铁, 李 玮, 等. 单裂隙热储热流耦合数值 模拟分析[J]. 当代化工, 2020, 49(4): 716-719+723.
- [17] 徐琼辉, 龚宇烈, 骆 超, 等. 太阳能-地热能联合发电系 统研究进展[J]. 新能源进展, 2016, 4(5): 404-410.
- [18] 黄旭, 沈传波, 杜利, 等. 沧县隆起中段献县凸起 和阜城凹陷岩溶型地热资源特征[J]. 现代地质, 2021, 35(4): 997-1008.
- [19] 万志军,张 源,师 鹏,等.煤-热共采模式下地热水 非常规开采数值模拟研究[J].煤炭学报,2023,48
 (3):1115-1125.

(责任编辑 唐彦彦)

on uniform design [J]. Energy and Built Environment, 2022, 3(2): 190-200.

- [6] 李霏霞, 曾声奎, 庞 怡, 等. 均匀试验设计在无人机
 关键参数设计中的应用[J]. 火力与指挥控制, 2010, 35(1): 122-125.
- [7] 王 熔,汤 涛,周 辉,等. GH4738 高温合金薄壁弧形零件切削参数优化[J].工具技术,2022,56(12):81-86.
- [8] 廖倞昀. 地下水渗流作用下的地热换热器集群的温度 场和设计研究[D]. 南昌:华东交通大学, 2019.
- [10] 张育平,刘俊,王沣浩,等.中深层U型对接井取
 热能力影响因素显著性分析[J].可再生能源,
 2022,40(11):1473-1480.
- [11] 鲍玲玲, 王 雪, 刘俊青, 等. 基于岩土纵向分层的中 深层 U 型地埋管换热器取热性能研究 [J]. 地球物 理学进展, 2022, 37(4): 1371-1378.
- [12] 王贵玲,张薇,梁继运,等.中国地热资源潜力评价 [J].地球学报,2017,38(4):449-450+134+451-459.
- [13] 刘晓燕,赵军,石成,等. 土壤恒温层温度及深度 研究[J]. 太阳能学报, 2007(5): 494-498.
- [14] 方开泰. 均匀设计 [J]. 战术导弹技术, 1994 (1): 55-65.
- [15] MILHOMME S, LARTIGAU J, BRUGGER C, et al. Bead geometry prediction using multiple linear regression analysis [J]. The International Journal of Advanced Manufacturing Technology, 2021, 117(1-2): 607-620. (责任编辑 唐彦彦)