• 首 页期刊简介编 委 会规章制度作者指南审稿流程联系我们
期刊封面
白梅娟,肖书忠,艾成伟,赵超,黄远,侯帅,黄伟建.基于GA的负相关剪切集成不平衡行为分类研究[J].河北工程大学自然版,2019,36(1):103-107
基于GA的负相关剪切集成不平衡行为分类研究
Research on Negative Correlation Pruning Ensemble Imbalance Behavior Classification Based on Genetic Algorithm
投稿时间:2018-12-02  
DOI:10.3969/j.issn.1673-9469.2019.01.022
中文关键词:  行为识别  传感器  不平衡  剪切集成  多样性  遗传算法
英文关键词:behavior recognition  sensor  imbalance  pruning ensemble  diversity  genetic algorithm
基金项目:河北省自然科学基金资助项目(E2017402115)河北省自然科学基金资助项目(E2015402077);河北省教育厅高校科学技术研究青年基金资助项目(QN2018073)
作者单位
白梅娟 河北工程大学 信息与电气工程学院, 河北 邯郸 056038 
肖书忠 河北工程大学 信息与电气工程学院, 河北 邯郸 056038 
艾成伟 河北工程大学 信息与电气工程学院, 河北 邯郸 056038 
赵超 河北工程大学 信息与电气工程学院, 河北 邯郸 056038 
黄远 河北工程大学 信息与电气工程学院, 河北 邯郸 056038 
侯帅 河北工程大学 信息与电气工程学院, 河北 邯郸 056038 
黄伟建 河北工程大学 信息与电气工程学院, 河北 邯郸 056038 
摘要点击次数: 122
全文下载次数: 69
中文摘要:
      基于传感器的人类活动识别(HAR)在健康医疗领域具有重要的研究价值及研究意义。以往的关于传感器人类活动分类识别算法的研究,并没有考虑不同类别行为数据间的不平衡性。为了解决不同行为类别数据间的不平衡性影响算法精确度的问题,此算法采用下采样方法从大类和小类数据集中随机抽取选出若干组数量上相等的两种数据的集合,将多个不平衡数据变成平衡数据。其次,多个平衡数据集上训练多个弱分类器。然后,此算法以弱分类器的负相关和预测精度为代价函数,使用遗传算法挑选出能够使代价函数值最高的弱分类器来构成集成分类器。使集成算法内的弱学习器具有较高预测精度和多样性。最后,此算法使用挑选出的弱学习器构成集成学习器对人的行为进行集成分类。此算法在已有的行为数据集上进行了仿真实验研究,实验结果证明本文提出的基于遗传的负相关剪切集成不平衡行为识别算法相对于传统算法能够有效提高不平衡行为识别的正确率。
英文摘要:
      Sensor-based human activity recognition (HAR) has important research value and significance in the field of health care. Previous researches on classification and recognition of sensor human activities have not considered the imbalance between different categories of behavior data. In order to solve the problem that the imbalance between data of different behavioral categories affects the accuracy of the algorithm, our algorithm uses the downsampling method to randomly extract two sets of data from large and small data sets, which are equal in number, and transform multiple imbalanced data into balanced data. Secondly, multiple weak classifiers are trained on multiple balanced datasets. Then, the algorithm takes the negative correlation and prediction accuracy of the weak classifier as the cost function and uses genetic algorithm to select the weak classifier which can make the highest value of the cost function to form the integrated classifier. The weak learner in the ensemble algorithm has high prediction accuracy and diversity. Finally, the algorithm uses the selected weak learners to construct an ensemble learner to classify human behavior. The experimental results show that the proposed algorithm can effectively improve the accuracy of unbalanced behavior recognition compared with the traditional algorithms.
  查看/发表评论  下载PDF阅读器  下载全文
关闭