文章编号:1673-9469(2011)04-0056-04

平朔矿区9#煤中镉、铬和铊的含量分布及赋存状态

赵 晶,关 腾,李姣龙,王金喜

(河北工程大学河北省资源勘查重点实验室,河北 邯郸 056038)

摘要:以山西平朔矿9*煤为研究对象,利用电感耦合等离子质谱测定煤中镉、铬和铊有害微量元 素的含量。利用 suffer 软件生成镉、铬和铊元素在矿区中的平面分布图。结果表明平朔矿区 9* 煤中的镉、铬和铊含量的平均值分别为 0.15 μg/g、17.39 μg/g 和 0.12 μg/g,其中镉和铊低于 华北煤、全国煤和美国煤均值;铬高于华北煤、全国煤和美国煤的均值。EF₁分别为 0.75、0.17 和 0.28,EF₂分别为 2.8、0.65 和 0.01。镉、铬和铊赋存在黄铁矿和粘土矿物中。

关键词:平朔矿区;赋存状态;有害微量元素

中图分类号: TQ533.1

文献标识码:A

The distribution and occurrence state of Cd, Cr and Tl of 9[#]

coal in Pingshuo Mine Area

ZHAO Jing, GUAN Teng, LI Jiao – long, WANG Jin – xi

(Key Laboratory of Resource Snivey and Research of Hebei Province Hebei University

of Engineering, Hebei Handan 056038, China)

Abstract: The contents of harmful trace elements including Cd, Cr and Tl of coal in the 9[#] coal of Pingshuo mining area, are determined by ICP – MS. The planar distribution map of Cd, Cr and Tl elements of the mining area is generated by suffer software. The results show that the average content of Cd, Cr and Tl elements in the 9[#] coal of Pingshuo mining area are 0. $15\mu g/g$, 17. $39\mu g/g$ and 0. $12\mu g/g$. The average content of Cd and Tl elements in the 9[#] coal of Pingshuo mining area is lower than North China's, the whole China's and America's, while the average content of Cr elements in the 9[#] coal of Pingshuo mining area is higher than North China's, the whole China's and America's, the whole China's and America's. Their concentration factor, EF_1 are 0.75, 0.17 and 0.28, and EF_2 are 2.8, 0.65 and 0.01. Cd and Tl are mainly in iron pyrite, while Cr is mainly in iron pyrite and clay pits.

Key words: Pingshuo mine area; occurrence state; harmful trace element

近年来,各国科学家和环境工作者,对煤中微量元素引起的环境污染问题产生了极大的关注^[1]。 Frinkelman^[2]认为,煤中微量元素的赋存状态不仅 关系到煤的加工利用,还决定了煤中微量元素对环 境的影响和工业价值。然而,由于特殊的地球化学 条件,使煤在泥炭化和煤化过程中富集了多种微量 元素,尤其是潜在毒害微量元素,煤中有机质和成 岩期形成的矿物充当了这些微量元素的捕集器^[3]。 任德贻等^{4,}研究了煤中有害元素在煤显微组分、黄 铁矿中的分布;白向飞^[3]利用浮沉试验得出的数 据,分析了中国各时代 10 个不同煤田煤中 26 种微 量元素与各种煤岩组分、煤质参数之间相关性,研 究表明镉和铬与粘土矿物正相关。Spears等^[6]发现 了煤中铊主要赋存在黄铁矿中,煤中的铊还与粘土 矿物有关。本文以平朔矿区 9⁴煤中镉、铬和铊 3 种 微量元素为研究对象,采用 ICP - MS、SEM - EDS 和 光学显微镜对样品中镉、铬和铊的分布规律及赋存 状态进行分析,为以后该区煤炭综合开发利用过程 中引起的环境污染预防和治理提供了依据。

1 地质概况

平朔矿区位于宁武煤田北端,属朔州市平鲁

收稿日期:2011-10-06

基金项目:国家自然科学基金项目资助(51174262) 特约专稿

作者简介:赵晶(1985-),女,黑龙江省泰来县人,硕士研究生,从事煤中有害微量元素方面的研究。

区。地处山西高原平朔台地之低山丘陵,全区多 为黄土覆盖,形成梁垣卯等黄土高原地貌景观。 9*煤层在全井田均有分布,是全井田最厚的煤层。 煤厚11.59~22.36 m,平均厚度16.26 m。顶板为 泥岩、砂质泥岩,有时为中、粗砂岩,底板为泥岩及 粉、细砂岩。煤层可采性指数 K_m=1,为可采的稳 定煤层。煤系地层主要为石炭一二叠系,包括石 炭系上统本溪组、太原组和二叠系下统山西组,煤 的变质程度比较低。

2 实验材料和分析方法

2.1 样品采集

采集地点为平朔矿区安家岭9*煤和安太堡9* 煤,共取269个样品。样品采集方法按照国家标 准《煤层煤岩采样方法》(GB482-1985)进行采 样。采样从煤层顶板开始,每隔1m采一个样品, 将采集的样品自然晾干。

2.1 实验仪器

TIDAS MSP 400 显微分光光度计(德国 J&M 公司); JSM6360LV 扫描电镜(SEM,日本电子生 产),配有 Quest Level II 能谱自动分析系统(EDS, 美国 Thermo 公司);电感耦合等离子质谱仪(HR - ICP - MS Element I Finnigan MAT 制造)。

2.2 实验方法

采用 TIDAS MSP 400 显微分光光度计确定显 微煤 岩 特 征 及 矿 物 类 型 赋 存 特 征 的 研 究; JSM6360LV 扫描电镜(SEM),电镜配有 Quest Level II 能谱自动分析系统,用来测定矿物颗粒的化学 成分;电感耦合等离子质谱仪(HR - ICP - MS Element)测定微量元素的含量。

3 工业分析

通过对安家岭9*煤16个样品进行测定,利用

光学显微镜测其镜质体反射率 $R_0 = 0.63\%$;安太 堡 9[#]煤 14 个样品测定 $R_0 = 0.62\%$ 。根据 CB5751-86《中国煤炭分类》可判定该煤为长焰 煤。按照 GBJT15224.1-1994《煤炭质量分级煤 炭灰分分级》可判定9^{*}煤基本属于中灰分、高挥发 分、中高硫、中热值气煤,工业分析结果见表1。

4 含量及平面分布

由于煤层受地质因素影响,不同地区不同煤 层的煤中,同一元素的赋存状态差别很大。本次 重点研究了安家岭9^{*}煤层12个剖面119个样品、 安太堡9^{*}煤14个剖面共150个样品,分析镉、铬 和铊3种有害微量元素在研究区中的平面分布规 律。煤中微量元素的分散富集程度常用富集系数 EF来表示,利用 Taylor 和 Clarke 提出的 *EF*₁ 计算 公式和 Valkovic 提出了另一种计算煤中微量元素 *EF*₂ 的公式。

EF ₁	= <u>煤中元素含量</u> 地壳克拉克值	(1)

Gluskoter 认为: *EF*₁ 大于 0.67 表示元素在煤 中富集,反之则分散; Filippidis 认为: 富 *EF*₁ 大于 2 表示元素在煤中富集; *EF*₁ 小于 0.5 表示元素在煤 中分散。

Valkovic 认为: *EF*₂ 大于 5 表示元素在煤中富 集; *EF*₂ 小于 5 表示元素在煤中分散。

利用 HR - ICP - MS 分析测试元素的含量,表 2 为9^{*}煤中镉、铬和铊的极大值、极小值、平均值与 地壳克拉克值^[7]、富集系数、中国华北石炭二叠纪 值^[8]、全国算术均值^[9]、美国值、世界值^[7]的对比 分析情况。可以看出,镉和铊的平均值低于华北、 全国和美国值;铬的平均值高于华北、全国和美国 值;与地壳克拉克值相比,铬低于地壳克拉克值, 镉和铊都略高于地壳克拉克值。

Tab. 1 The statistics result of proximate analysis							
原煤灰分	煤样挥发	原煤干燥	原煤干燥无灰	原煤干燥剂无灰	原煤干燥无灰		
产率/%	分产率/%	基全硫/%	基发热量/(MJ・kg ⁻¹)	基碳含量/%	基氢含量/%		
22.95	41.15	2.17	24.60	80.85	5.22		

表 1 工业分析统计结果 ab 1 The statistics result of provimate analy

表 2 9 [*] 煤中微量元素与中国、美国对比 Tab. 2 Element concentration of coals from China, America μg/g											
	元素	9*煤		克拉	FF	FF	华北值	人同店	羊団店		
		极大值	极小值	平均值	克值			(C – P)	王国祖	天四祖	
	镉	0.24	0.09	0.15	0.2	0.75	2.8	0.5	0.2	0.47	
	铬	28.73	6.59	17.39	100	0.17	0.65	14.98	12	15	
	铊	0.74	0.01	0.12	0.43	0.28	0.01	0.4	0.4	1.2	

图1 镉、铬和铊在平朔矿区中的分布

Fig.1 Distribution map of Cd, Cr and Tl in Pingsuo Mining District

利用 suffer 软件生成镉、铬和铊元素在矿区中 的平面分布图(图1),可以直观显示出镉、铬和铊 的平面分布情况。镉和铊的含量除安太堡露天煤 矿出现高值,其余全部小于华北值、全国值和美国 值;铬的含量除白色区域外全部大于华北值、全国 值和美国值。根据式(1),按照 Gluskoter 的判断 标准,镉在煤中富集,铬和铊分散;按照 Filippidis 的判断标准,煤中铬和铊分散;根据式(2),按照 Valkovic 的富集系数计算公式及其判断标准,3 种 元素都是分散的。虽然这 3 种有害微量元素比较 分散,但在煤炭利用过程中,经过迁移和转化仍会 造成严重的环境污染。

5 赋存状态分析

微量元素的主要载体是矿物,煤中的有害微量元素与硫化物矿物极为密切相关,其中镉为亲 硫元素。Swaine^[3]认为黄铁矿中也含有镉,Mukhopadhyay 等^[10]认为镉与硫化物有联系,赵峰 华^[11]应用逐级化学提取的方法,得出黄铁矿中含 镉 0.86~2.00 μg/g。张军营^[12]利用 GF – AAS 方法研究黔西南晚二叠世煤,测得黄铁矿中含镉 均值为0.38 µg/g。

关于铬的赋存状态, Hatch 等^[13] 认为煤中铬 与黄铁矿有联系。Huggins 等^[14] 用 X 射线吸收精 细结构谱(XAFS)证实了煤中铬赋存在黄铁矿、含 铁矿物、硫化物和铬铁矿等之中。Mukhopadhyay 等^[12] 认为铬与粘土矿物有关。Finkelman^[15] 利用 浮沉实验的方法,发现铬与有机质及粘土有联系。 代世峰等^[16] 通过逐级化学提取的方法,发现铬主 要存在于硅铝化合物的结合形态中。

2011年

Swaine^[3]在研究澳大利亚新南威尔士煤时分 析出黄铁矿中含有铊。刘英俊等^[17]认为硫化物 中含铊比煤中高,因为在 H₂S 引起的还原条件下 铊易于聚集在煤中,铊以硫化物的形式存在。庄 新国等^[18]研究安太堡 9[#]煤时发现,铊与钽有较好 的相关性,可能是被粘土矿物吸附所致。张军 营^[12]研究黔西南晚二叠世煤中的矿物测试得出 黄铁矿中铊含量均值为 0.25 µg/g,粘土矿物中铊 含量均值为 0.21 µg/g。

在显微镜和扫描电镜下观测 9*煤样品中有大量的粘土矿物和黄铁矿,如图 2 和图 3 所示。利用 SEM - EDX 方法检测出黄铁矿和粘土矿物中含

万方数据

(a) 粘土矿物,反射光 200×

(b) 黄铁矿, 反射光 100×

Fig. 2 Observing the clay mineral and iron pyrite by microscope

图2 显微镜下观测的粘土矿物和黄铁矿

(a) 粘土矿物, SEM

(b) 黄铁矿, SEM

有镉、铬和铊这3种元素。根据镉、铬和铊具有亲 硫性及与粘土矿物、硫化物的相关性,说明在此煤 层中粘土矿物和黄铁矿是镉、铬和铊的载体。

6 结论

1) 平朔矿区 9^{*}煤中的镉、铬和铊含量的平均 值分别为 0.15 μg/g、17.39 μg/g 和 0.12 μg/g,其 中镉和铊低于华北煤、全国煤和美国煤的均值;铬 高于华北煤、全国煤和美国煤的均值。

2) 根据 Gluskoter 的判断标准,9^{*}煤中镉富集, 铬和铊分散。根据 Filippidis 的判断标准,铬和铊 是分散的;根据 Valkovic 的判断标准,镉、铬和铊 都是分散的。 EF_1 分别为 0.75、0.17 和 0.28, EF_2 分别为 2.8、0.65 和 0.01。

3)9[#]煤中镉、铬和铊的主要载体为粘土矿物 和黄铁矿。

参考文献:

- [1] 冯新斌,洪业汤.煤中微量元素的环境地球化学[J].矿物岩石地球化学通报,1997,16(4):235-238.
- [2] FINKELMAN R B. Trace elements in coal: Environmental and health significance [J]. Biological Trace Element Research, 1999, 67(3): 197 - 204.
- [3] SWAINE D J. Trace elements in coal [M]. London: Butterworths, 1990, 92 - 178.
- [4] 任德怡,王运全,杨绍晋,等.我国煤中微量元素分布

特征[M]. 西安:陕西科学出版社,1995.

- [5] 白向飞. 中国煤中微量元素分布赋存特征及其迁移规 律实验研究[D]. 北京:煤炭科学总院,2003.
- [6] SPEARS D A , Zheng Y . Geochemistry and origin of elements in some UK coals [J]. International Journal of Coal Geology, 1999, 38(3-4):161-179.
- [7] 赵伦山,张本仁.地球化学[M].北京:地质出版 社,1988.
- [8] 代世峰. 煤中伴生元素的地质地球化学习性与富集模式[D]. 北京:中国矿业大学,2002.
- [9] 赵继尧, 唐修义, 黄文辉, 等. 中国煤中微量元素的丰度[J]. 中国煤田地质, 2002, 14(增刊): 5-13.
- [10] MUKHOPADHYAY P K, COODARZI F, GRANDLEM IRE A L, et al. Comparison of coal composition and elemental distribution in selected seams of the Sydney and Stellarton Basion, Nova Scotia, Eastern Canada [J]. International Journal of Coal Geology, 1998, 37 (1 – 2):113 – 141.
- [11] 赵峰华. 煤中有害微量元素分布赋存机制及燃煤产 物淋滤实验研究[D]. 北京:中国矿业大学北京研究 生部,1997.
- [12] 张军营.煤中潜在毒害微量元素富集规律及其污染 性抑制研究[D].北京:中国矿业大学,1999.
- [13] HATCH J R, AVCIN M J, DORPE P E. Element geochemistry of Cherokee Group coals (Middle Pennsyvanian) from south central and southeastern Iowa [J]. Technical Paper Iowa Geological Survey, 1984, 5:1-108. (下转第73页)

图6 哨牌矿区三维地质模型 Fig.6 The geological 3D model of Shaopai mining areas

3 结束语

GOCAD 是一款强大的地质建模软件。一方 面可以识别多种数据来源,极大简化建模,而且在 建模时可以采用克里金插值加密点,对于插值产 生的畸变可以通过 DSI 功能修正。因此建立的三 维模型更加逼近真实地质体。另一方面,随着研 究的深入常需要在地表、钻孔或坑道中取样进行 各种物理力学性质试验或化学元素分析,把试验 所得数据以取样点属性的方式赋予三维模型中对 应钻孔上,然后将有限的实验数据通过 GOCAD 的 DSI 功能插值加密,就能绘制相关属性模型或变量 图,进而对其进行专项分析。

(上接第59页)

- [14] HUGGINS F E, HUFFMAN G P. Modes of occurrence of trace elements in coal from XAFS spectroscopy [J]. International Journal Coal Geology, 1996, 32:43-44.
- [15] FINKELMAN R B. Modes of occurrence of potentially hazardous elements in coal: levels of confidence [J].
 Fuel Processing Technology, 1994, 39:21-34.
- [16] 代世峰,任德怡,刘建荣,等. 河北峰峰矿区煤中微量

参考文献:

- [1] 王明华,白云.3D 地质建模研究现状与发展趋势[J]. 土工基础,2006,20(4):68-70.
- [2] 张夏欢,高 谦. GOCAD 地质三维建模技术在矿山边坡 工程中的应用[J]. 矿业快报, 2008,9(9):113-114.
- [4] 管树巍, A NDREAS PLESCH,李本亮,等. 基于地层力 学结构的三维构造恢复及其地质意义[J]. 地学前缘, 2009, 7(4): 142 - 143.

(责任编辑 刘存英)

元素有害元素的赋存与分布[J].中国矿业大学学报,2003,32(4):358-361.

- [17] 刘英俊,曹励明,李兆麟,等.元素地球化学[M].北 京:科学出版社,1984,50-501.
- [18] 庄新国,曾荣树,徐文东.山西平朔安太堡露天9煤 层中的微量元素[J].地球科学,1998,23(6):553 -558.

(责任编辑 马立)