基于混合蝙蝠算法的多车场车辆调度研究
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

C931

基金项目:

河北省高等学校人文社会科学研究项目(SD181012);河北省社会科学基金项目(HB17GL022)


Research on multi-depot vehicle scheduling based on hybrid bat algorithm
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    多车场车辆调度问题是物流配送研究中的NP难题,同时也是现代物流的发展趋势。针对多车场车辆调度问题,考虑客户和物流运营商的利益,以客户不满意度最低、物流成本最低为目标,建立多目标车辆调度数学模型,并对目标函数进行规范化处理,将多目标问题化简为单目标问题。针对传统的蝙蝠算法在局部搜索能力上存在着不足的问题,将遗传算法中的自适应交叉操作引入到蝙蝠算法中,设计一种混合蝙蝠算法计算数学模型。通过MATLAB软件进行仿真,仿真结果与传统的蝙蝠算法进行对比。结果表明:此方法在解决多车场车辆调度问题上是可行的,并且优于传统的蝙蝠算法。

    Abstract:

    Multi-depot vehicle scheduling problem is a NP hard problem in logistics distribution, and it is also the development trend of modern logistics. Aiming at the problem of multi-depot vehicle scheduling, this paper took the interests of customers and logistics operators into consideration, built a multi-objective vehicle scheduling mathematical model with the objective of minimum customer dissatisfaction and minimum transportation cost, and normalized the objective function to transform the multi-objective problem into a single objective problem. The traditional bat algorithm has some shortcomings in local search ability, the crossover operation of genetic algorithm was introduced into bat algorithm, and a hybrid bat algorithm solution model was proposed. Through the simulation of MATLAB software, the simulation results are compared with the traditional bat algorithm. The results show that this method is feasible and superior to the traditional bat algorithm.

    参考文献
    相似文献
    引证文献
引用本文

曹庆奎,高亚伟,任向阳.基于混合蝙蝠算法的多车场车辆调度研究[J].河北工程大学学报社会科学版,2021,38(1):1-6

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2020-10-05
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2021-05-18
  • 出版日期: