人工智能企业融资效率及影响因素研究——基于博弈交叉效率和Tobit模型
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

F224

基金项目:

国家社科基金项目(编号:15BGL018);安徽省高校自然科学研究重点项目(编号:KJ2021A0474)


Research on Financing Efficiency and Influencing Factors of Artificial Intelligence Industry Based on Game Cross Efficiency and Tobit Model
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    人工智能发展对促进中国经济结构转型升级、推动经济高质量发展具有重要意义,党的二十大报告指出要构建新一代信息技术、人工智能等一批新的增长引擎。目前,人工智能企业融资态势好,融资效率成为影响人工智能企业发展的关键因素之一。考虑到企业融资的竞争性,该文构建博弈交叉效率模型测度人工智能企业融资效率,并利用Tobit方法构建融资效率影响因素模型。实证研究表明:人工智能企业整体融资效率不高,且企业间差异明显;按均值进行分区,高中低融资效率企业变化趋势呈现高度一致性;从时序角度来看,2015—2020年呈现出下降—急剧上升—缓慢下降的总体趋势。Tobit模型表明,企业规模、盈利能力和成长能力均显著正向影响人工智能企业融资效率,债权融资水平会负向显著影响融资效率,股权集中度对人工智能企业融资效率无显著影响。最后,基于实证研究结果,提出优化人工智能企业融资效率的建议。

    Abstract:

    Artificial intelligence (AI) industry plays an important role in promoting the transformation and upgrading of China’s economic structure and promoting high-quality economic development. The report of the 20th National Congress pointed out that a new generation of information technology, artificial intelligence and other new growth engines should be built. At present, the financing situation of AI enterprises is good, and the financing efficiency has become one of the key factors affecting the development of AI enterprises. Considering the competitiveness of enterprise financing, this paper builds a game cross efficiency model to measure the financing efficiency of AI enterprises, and uses Tobit method to build a model of factors affecting financing efficiency. The research shows that the overall financing efficiency of AI enterprises is not high, and there are obvious differences between enterprises. The enterprises are divided according to the average size, and the changing trend of high-, medium- and low-efficiency enterprises shows a high degree of consistency. From the perspective of timing, it showed an overall downward, sharp rise, slow downward trend from 2015 to 2020. The analysis of the factors affecting the financing efficiency of AI enterprises from the Tobit model shows that the scale, profitability and growth ability of enterprises all significantly positively affect the financing efficiency of AI enterprises, the level of creditor’s rights will significantly affect the financing efficiency, and the concentration of equity has no significant impact on the financing efficiency of AI enterprises. Finally, suggestions targeted for optimizing financing are put forward.

    参考文献
    相似文献
    引证文献
引用本文

郑兵云,朱少聪,李邃.人工智能企业融资效率及影响因素研究——基于博弈交叉效率和Tobit模型[J].河北工程大学学报社会科学版,2023,40(3):23-31

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2023-06-06
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2023-11-02
  • 出版日期: 2023-09-25