碳交易下分布式双资源柔性作业车间节能调度
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

TP18

基金项目:

安徽省哲学社会科学规划项目(编号:AHSKY2022D117)


Energy-Efficient Scheduling of Distributed Dual-Resource Flexible Job Shop Under the Background of Carbon Trading Policy
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    在碳交易政策的背景下,企业需统筹考虑效率和环境因素,以实现企业效益最大化。文章研究了考虑机器和工人的分布式双资源柔性作业车间节能调度问题和方案,以最短完工时间、最小能耗和碳交易成本为目标,建立了混合整数规划模型。依据此问题多资源约束的特点,研究设计了一种改进麻雀搜索算法,嵌入了"工厂—工序—机器&工人"三层编码的主动解码策略,提高了资源利用率。为了扩大搜索空间,在算法中引入了6种局部搜索策略,通过2、3、4个工厂共30组算例,将改进的麻雀搜索算法与其他3种算法进行对比。实验结果表明,改进的麻雀搜索算法优于其他对比的算法,对比结果验证了此改进算法的有效性。

    Abstract:

    In the context of carbon trading policy, enterprises need to consider efficiency and environmental factors integrally to maximize their benefits. In this paper, an energy-saving scheduling problem for distributed dual-resource flexible job shop considering machines and workers is investigated, and a mixed-integer planning model is developed, with the objectives of minimizing the makespan, energy consumption and carbon trading cost. Aiming at the multi-resource constraints of this problem, an improved sparrow search algorithm is designed in this paper, which embeds an active decoding strategy based on the three-layer encoding of "factory-operation-machine&worker" to improve the resource utilization rate. To expand search space, 6 local search strategies are introduced into the algorithm. The improved sparrow search algorithm is compared with the other three algorithms through 30 sets of instances in 2, 3 and 4 factories. The results show that the improved sparrow search algorithm is superior to the other comparison algorithms, and the comparison results verify the effectiveness of this improved algorithm.

    参考文献
    相似文献
    引证文献
引用本文

张洪亮,秦超群,单冰艳.碳交易下分布式双资源柔性作业车间节能调度[J].河北工程大学学报社会科学版,2024,41(2):54-63

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2024-01-06
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2024-07-13
  • 出版日期: 2024-06-25